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In 1997 Kuo et al predicted that in halo nuclei core polarization would be suppressed, 
and that  the fundamental nucleon-nucleon interaction could be probed in a clearer 
and more direct way in halo nuclei than in ordinary nuclei….

T.T.S. Kuo et al,
PRL 78 (1997) 2708 



S. Fortier  et al. Phys. Lett. B461  (1999)22
 J.S. Winfield et al.,  Nucl.Phys. A683 (2001)48
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The admixture of d5/2 x 2+ configuration
in the 1/2+ g.s. of 11Be is about 15%

… But experiments demonstrated that the core dynamics plays an important role…



J.S. Winfield et al., 
Nucl.Phys. A683 (2001)48

A  careful analysis of transfer reactions is needed 
to estimate phonon admixtures in the wavefunctions   

62 J.S. Winfield et al. / Nuclear Physics A 683 (2001) 48–78

Fig. 7. Theoretical angular distributions calculated under the DWBA obtained with single-particle
SE form factors for states in 10Be. The points are the experimental angular distributions.

calculation. The largest-angle points were not used in the extraction of spectroscopic
factors in Ref. [21], neither are they so used in the present paper.

5. Analysis of angular distributions

5.1. Optical-model potentials

Different combinations of optical potentials for the entrance and exit channels have been
tried in the calculations presented below, in order to test the sensitivity of the extracted
spectroscopic factors to the input parameters. All the optical potentials used in the present
analysis have the standard Woods–Saxon or Woods–Saxon derivative form.
For the entrance channel, three principal optical potentials have been used. The most-

recent global nucleon–nucleus optical parameterisation is the “CH89” one of Varner et
al. [44]. This has dependences on energy, mass and isospin, adjusted for a range of stable
nuclei from masses A = 40 to 209. However, data from recent proton elastic scattering
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1. Introduction

The nucleus 11Be is of especial interest for several reasons. As is well known, the
ground-state spin parity is 1/2+ in contradiction to the simple shell model and spherical
Hartree–Fock prediction of 1/2−. This “parity inversion” is correctly predicted by, for
example, recent psd-shell calculations of Brown [1]. The 2s1/2 intruder orbital is lowered
by the noncentral part of the particle–hole interaction [2]. Moreover, 11Be is often regarded
as the classic one-neutron halo nucleus: the small single-neutron separation energy of
505 keV together with an assumed s-wave nature of the valence neutron leads to a very
extended spatial distribution [3,4].
Several calculations of the 11Be ground-state structure have been performed. The

theoretical approaches include: the shell model [5,6], the variational shell model [7], the
Generator Coordinate model [8], and coupling of the neutron with a vibrational [9–11] or
rotational core [12,13]. Most of these models correctly reproduce the parity inversion and
high-energy reaction data, but make very different predictions about the degree of coupling
of an s1/2 neutron to the 10Be 0+ ground-state core relative to a d5/2 neutron coupled to
a 2+ excited core (the first excited state of 10Be at 3.368 MeV).
A direct test of the models for the structure of 11Begs may be made by measuring the

relative cross sections of one-neutron pick-up reactions feeding the 0+ and 2+ states
of 10Be. Transfer cross sections depend on the overlap between the wave functions
of the initial and final states through the radial neutron form factors ulj (r). Standard
distorted wave Born approximation (DWBA) analyses assume that these form factors are
proportional to single-particle wave functions U

sp
lj (r), so that one may calculate cross

sections independently of any prior assumption about the structure of initial and final states,
apart from an overall normalisation factor. The latter is the spectroscopic factor, which is
defined as the product of the overlap integral

∫
u2lj (r)r

2 dr and a factor (n+ 1) [14], where
n in the present case is the neutron occupation number of the 2s1d shell in 10Be. If one
expresses the wave function of the 1/2+ 11Be ground state as the sum of the single-particle
and core excited components

∣∣11Begs
〉
= α

∣∣10Be
(
0+)

⊗ 2s
〉
+β

∣∣10Be
(
2+)

⊗ 1d
〉
, (1)

the spectroscopic factors S(0+) and S(2+) for transfer to the ground and first excited
state of 10Be should be directly related to α2 and β2, respectively, assuming negligible
population of the 2s1d orbitals by 10Be core neutrons. 2 Table 1 gives spectroscopic factors
deduced from the various models cited above. These spectroscopic factors vary widely. For
example, the standard Shell Model [5,6] predicts S(0+) = 0.74 and S(2+) = 0.19, while

2 Strictly speaking, α and β should be equal to the fractional parentage coefficients, the squares of which add
up to unity. The relation between these and spectroscopic factors is given in Appendix A and Ref. [14].

Good agreement with 2+ cross sections is obtained 
in DWBA with β2 = 0.17 considering the coupling effects on 
the transfer form factor;  using β as a simple spectroscopic
factor one finds β2 = 0.28



Independent Particles Collective Phonons

Hartree-Fock mean Field Random Phase Approximation

Particle-vibration 
          coupling

PVC

Can we obtain a consistent description of halos in terms
of elementary modes of excitation including some core degrees of freedom ? 



Particle-vibration  coupling on top of self-consistent density functional calculations 
has been  mostly applied to heavy nuclei near closed shells. It provides a successful
reproduction of the width of giant resonance modes .…

E. Litvinova, PRL 107 (2023) L041302Z.Z. Li, Y.F. Niu, G. Colò. PRL 131 (2023) 082501

… although the situation is less clear concerning the centroids and the renormalization of 
single particle states



The Particle Vibration Coupling  Hamiltonian:

H = Hvib  + Hp + HPVC
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We can project these equations on a complete single-particle basis (labeled by quantum

Collective (   𝝘𝝺𝝻+ creates a phonon)

Single-particle

Linear interaction

Def. parameter
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C

b
(r) (10)

where

Va(r) = V (r) + Vls(r) + Vcent(r) (11)

and

⌅a,b� = h⇥jama

X

�µ

Y�µ[�
+.

�µ
+ (�1)

µ
��µ][⇥jb

· ��]jamai (12)

We can project these equations on a complete single-particle basis (labeled by quantum

1

The NFT Hamiltonian:

H = Hc +Hp +Hint. (1)

Hc =
X

�µ

h̄!�[�
+.

�µ
��µ + 1/2] (2)

Hp = �h̄
2
/2m d

2
/dr

2
+ V (r) + Vls(r) (3)

Hint. =
X

�µ

�rdV/dr��Y�µ[�
+.

�µ
+ (�1)

µ
��µ] (4)

The channels:

H a = Ẽ a (5)
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An early interpretation of parity inversion: dynamical 
coupling between the core and the loosely bound neutron  



Typical spherical 
mean-field results
with Skyrme forces
(Sagawa,Brown,Esbensen 
PLB  309(93)1)

Parity inversion in N=7 isotones is not reproduced by spherical mean field 
obtained from non relativistic energy density functionals.

8 MeV

5 MeV



p1/2p3/2

2+
Eshift = + 2.5 MeV

Pauli blocking of 
core ground state 
correlations

Self-energy

Eshift = - 2.5 MeV

2+

s1/2

s1/2

d5/2

5 MeV 0 MeV

½ -

½+

Level inversion

+

11Be



Comparison with the model by Ikeda, Myo et al. 

K. Ikeda et al,
Lect. Notes in Physics 818 (2010) 

The p1/2 orbit is pushed up by 
pairing correlations
and tensor force. Only 3/2-  
configurations
are included: coupling to core 
vibrations (1/2-) is
not considered. Binding energy is 
given  as input. 50%(s2)-50%(p2) 
wavefunction is obtained

the superposition of minima (a) and (b), named as (c), to obtain a 9Li wave
function including the tensor and pairing correlations, simultaneously. For (c), the
favored two configurations in each minimum (a) and (b) are still mixed with the
0p–0h one, and the property of the tensor correlation is kept in (c). The superposed
9Li wave function possesses both the tensor and pairing correlations.

5.5.4 Pauli-Blocking Effect in 11Li

We discuss here the Pauli-blocking effect in 11Li and 10Li. Considering the
properties of the configuration mixing of 9Li, we discuss the Pauli-blocking effects
in 10Li and 11Li and their difference as shown in Fig. 5.21. For (a) in Fig. 5.21, the
9Li ground state (GS) is strongly mixed, in addition to the 0p–0h state, with the
2p–2h states caused by the tensor and pairing correlations.

Let us add one neutron to 9Li for 10Li. For (b) in Fig. 5.21, when a last neutron
occupies the 0p1/2 orbit for the p-state of 10Li, the 2p–2h excitation of the pairing

11Li
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νπ νπ

νπ νπ

Pauli blocking
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1s1/2(a)

last neutron

Fig. 5.21 Schematic illus-
tration for the Pauli-blocking
in 11Li. Details are described
in the text
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The core: spherical or deformed?
Important role of  fluctuations expected in light nuclei 
We propose a dynamical description based on Nuclear Field Theory

N. Vinh Mau, Nucl. Phys. A 592  (1995) 43
G.F. Esbensen and H. Sagawa, Phys. Rev C 51 (1995)1274
P. Descouvemont, Nucl. Phys. A 626 (1997) 647
F.M. Nunes and I. Thompson, Nucl. Phys. A 703 (2002) 593
I. Hamamoto and S. Shimoura, J. Phys. G 34 (2007) 2715
G. Blanchon et al., Phys Rev. C 82 (2010) 034313
T. Myo et al, PRC 86 (2012) 024318



We assume a rather shallow energy surface, in which the microscopic collective wavefunction has 
a reasonable overlap with a wavefunction centered at 𝛽 =0 , with a value of  < 𝛽2 > derived from the 
experimental B(E2), according to the collective model .

Y. Zhang, H. Sagawa et al.,
PTP 120 (2008) 129



Dynamical picture:
Quadrupole fluctuations in the excited state  are blocked by 
Pauli principle

Static picture:
The excited state is associated with a much smaller 
deformation 

J. Geng et al., PLB 858 (2024) 139036 



N=7 isotones 
F. Barranco et al., 
PRL 119 (2017) 
082501
PRC 101 (2020)
031305(R)

The parameters of the mean field are adjusted
to reproduce the s.p. levels after 
renormalization processes have been 
 calculated



11Be within NCSMC:  
Discrimination among chiral nuclear forces 

29 

Feb 17 2016 Angelo Calci

11Be with NCSMC

1

exp.
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Robert Roth - TU Darmstadt - February 2015

9Be: NCSM vs. NCSMC

! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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1/2+
1/2-

5/2+

3/2-

3/2-

5/2-

3/2+

9/2+

Parity inversion 

9/2+ 

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016) 

PVC Ab Initio

The description of the experimental results from     
complementary approaches can be of great interest 11Be



Transfer reaction populating states of the continuum  

Green Function Transfer: allows to obtain the cross section as a function of the 
energy of the “spectator” particle b  using the x-A microscopic self-energy 

G. Potel, F. M. Nunes, and I. J. Thompson, Phys. Rev. C 92, 034611 (2015)
G. Potel et al, EPJ A 53 (2017) 178
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FIG. 4. (a-c) (continuous curve) Absolute di↵erential and (insets) summed cross sections associated with the reactions 2H(10Be,11Be)1H at
E=107 MeV, populating the 1/2+, 1/2�, and 5/2+ states. The experimental data [6] are displayed in terms of solid dots. (d) Same as before,
but for the reaction 1H(11Be,10Be)2H at E=388.3 MeV, populating the 2+ state [3].
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Two new elements in 11Li:

a) The existence of a collective low-lying 
1- vibration 

b) The pairing interaction receives an important 
contribution from the  interaction induced 
by the exchange of  collective vibrations,
including the 1-

11Li structure
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Calculation of absolute two-nucleon transfer cross section 
                      by finite-range  DWBA calculation 

Essential component to populate 
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Fig. 4. 11Li(ℏ, 𝑉)9Li cross sections. The solid lines are obtained with the 11Li+p
potential of Ref. [15] and the dashed lines with the KD03 global potential. The 
dotted line corresponds to the 11Li overlap integral without core excitation. The 
three-body calculation of Ref. [15] is shown in blue and is labeled as ‘3B’. The 
data are taken from Ref. [11].

non-microscopic approach involves a 9Li + n potential which is poorly 
known, in contrast with the present model where the 11Li wave functions 
and overlap integrals are derived from a nucleon-nucleon interaction.

The potential of Ref. [37] is obtained from a CDCC calculation in-
volving the 11Li breakup, and is expected to be more reliable than the 
global parametrization of KD03 (dashed line in Fig. 4) which is fitted at 
higher energy and on heavier nuclei. It is, however, widely used since 
many nucleon-nucleus optical potentials are not accurately known. A 
measurement of the elastic cross section at the same energy would be 
welcome in the determination of the transfer cross section.

The 11Li(ℏ, 𝑉)9Li∗ cross section is smaller than the ground state con-
tribution, as expected from experiment and from the different overlap 
integrals (see Fig. 3). In the angular range 60◦ < 𝜎 < 120◦, the calcula-
tion is consistent with experiment. At small angles, however, the behav-
ior is different. The data present a fast decrease for 𝜎 < 60◦ whereas the 
semi-microscopic cross section weakly depends on the angle.

6. Energy dependence of the cross sections

For both considered reactions, data are available at a single energy. 
To investigate the energy dependence we show in Fig. 5 the cross section 
at 𝜎 = 0◦ in the energy interval 𝐵c.m. < 25 MeV. We indicate by arrows 
the experimental energies. As found in the Ref. [15] in a non microscopic 
description of 11Li, the energy adopted in Ref. [11] nearly corresponds 
to the maximum cross section. For the 6He(ℏ, 𝑉)4He reaction, however, 
the cross section is predicted to increase at lower energy. The maximum 
is found near 𝐵c.m. ≈ 8 MeV, i.e. at 𝐵lab ≈ 56 MeV. In both reactions the 
data availability at other energies would be a valuable test of the model. 
Two-neutron transfer cross sections on other halo nuclear such as 14Be 
would also be welcome.

7. Conclusion and outlook

This paper explores the structure of halo nuclei, such as 6He and 11Li, 
through (ℏ, 𝑉) reactions, which offer insights into their spectroscopic 
properties. We employ a semi-microscopic model using the Resonating 
Group Method (RGM) to calculate overlap integrals, incorporating the 
Pauli principle and allowing for core excitations. This approach does 

Fig. 5. 6He(ℏ, 𝑉)4He and 11Li(ℏ, 𝑉)9Li cross sections at 𝜎 = 0◦ as a function of 
energy. For 11Li(ℏ, 𝑉)9Li the dashed line corresponds to the 9Li excited state.

not contain any fitting parameter, and is particularly suitable for halo 
nuclei due to their core + neutron + neutron structure.

The RGM generates microscopic overlap integrals used as input for 
calculating (ℏ, 𝑉) cross sections within the Distorted Wave Born Ap-
proximation (DWBA). The model is applied to both 6He(ℏ, 𝑉)4He and 
11Li(ℏ, 𝑉)9Li reactions. For 6He, the calculated cross section reasonably 
matches experimental data, although it overestimates values at small 
angles. The results demonstrate a low sensitivity to the choice of the 
6He+p optical potential.

In the case of 11Li, the model predicts both the ground state and 
excited state contributions to the cross section. The spectroscopic fac-
tors for 11Li are calculated for various channels, revealing the dominant 
role of the 9Li ground state configuration. The 11Li(ℏ, 𝑉)9Li cross section 
calculations are compared to experimental data, showing reasonable 
agreement. The inclusion of core excitations and the use of microscopic 
overlap integrals within the RGM framework offer a valuable tool for 
investigating the structure of halo nuclei through (ℏ, 𝑉) reactions.

The dependence of the cross section at 𝜎 = 0◦ has been analyzed, 
and suggests that the 6He(ℏ, 𝑉)4He cross section could be larger and at 
energies (𝐵lab ≈ 50 MeV). Generally speaking, measurements at other 
energies would be useful to assess theoretical models.

The present model goes beyond traditional DWBA calculations, 
where the projectile and residual-nucleus wave functions are described 
in the simple potential model, neglecting the internal structure. Of 
course a fully microscopic approach would be desirable, but is currently 
not feasible, essentially for two reasons: (𝜃) we are considering weakly 
bound halo nuclei and a scattering model should include these proper-
ties. A microscopic cluster study of 6He and of 11Li is possible [26], but 
is very demanding in terms of computer capabilities. Adding an incident 
particle means that a double angular-momentum projection is necessary 
which would still considerably increase the computer times. (𝜃𝜃) More 
important, a reaction such as 11Li+p , even at low energies, presents 
many open channels which cannot be accounted for in a microscopic 
theory. The use of optical potentials, which simulate the absorption to 
these open channels, is therefore unavoidable.
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Fig. 4. 11Li(ℏ, 𝑉)9Li cross sections. The solid lines are obtained with the 11Li+p
potential of Ref. [15] and the dashed lines with the KD03 global potential. The 
dotted line corresponds to the 11Li overlap integral without core excitation. The 
three-body calculation of Ref. [15] is shown in blue and is labeled as ‘3B’. The 
data are taken from Ref. [11].

non-microscopic approach involves a 9Li + n potential which is poorly 
known, in contrast with the present model where the 11Li wave functions 
and overlap integrals are derived from a nucleon-nucleon interaction.

The potential of Ref. [37] is obtained from a CDCC calculation in-
volving the 11Li breakup, and is expected to be more reliable than the 
global parametrization of KD03 (dashed line in Fig. 4) which is fitted at 
higher energy and on heavier nuclei. It is, however, widely used since 
many nucleon-nucleus optical potentials are not accurately known. A 
measurement of the elastic cross section at the same energy would be 
welcome in the determination of the transfer cross section.

The 11Li(ℏ, 𝑉)9Li∗ cross section is smaller than the ground state con-
tribution, as expected from experiment and from the different overlap 
integrals (see Fig. 3). In the angular range 60◦ < 𝜎 < 120◦, the calcula-
tion is consistent with experiment. At small angles, however, the behav-
ior is different. The data present a fast decrease for 𝜎 < 60◦ whereas the 
semi-microscopic cross section weakly depends on the angle.

6. Energy dependence of the cross sections

For both considered reactions, data are available at a single energy. 
To investigate the energy dependence we show in Fig. 5 the cross section 
at 𝜎 = 0◦ in the energy interval 𝐵c.m. < 25 MeV. We indicate by arrows 
the experimental energies. As found in the Ref. [15] in a non microscopic 
description of 11Li, the energy adopted in Ref. [11] nearly corresponds 
to the maximum cross section. For the 6He(ℏ, 𝑉)4He reaction, however, 
the cross section is predicted to increase at lower energy. The maximum 
is found near 𝐵c.m. ≈ 8 MeV, i.e. at 𝐵lab ≈ 56 MeV. In both reactions the 
data availability at other energies would be a valuable test of the model. 
Two-neutron transfer cross sections on other halo nuclear such as 14Be 
would also be welcome.

7. Conclusion and outlook

This paper explores the structure of halo nuclei, such as 6He and 11Li, 
through (ℏ, 𝑉) reactions, which offer insights into their spectroscopic 
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Group Method (RGM) to calculate overlap integrals, incorporating the 
Pauli principle and allowing for core excitations. This approach does 

Fig. 5. 6He(ℏ, 𝑉)4He and 11Li(ℏ, 𝑉)9Li cross sections at 𝜎 = 0◦ as a function of 
energy. For 11Li(ℏ, 𝑉)9Li the dashed line corresponds to the 9Li excited state.

not contain any fitting parameter, and is particularly suitable for halo 
nuclei due to their core + neutron + neutron structure.

The RGM generates microscopic overlap integrals used as input for 
calculating (ℏ, 𝑉) cross sections within the Distorted Wave Born Ap-
proximation (DWBA). The model is applied to both 6He(ℏ, 𝑉)4He and 
11Li(ℏ, 𝑉)9Li reactions. For 6He, the calculated cross section reasonably 
matches experimental data, although it overestimates values at small 
angles. The results demonstrate a low sensitivity to the choice of the 
6He+p optical potential.

In the case of 11Li, the model predicts both the ground state and 
excited state contributions to the cross section. The spectroscopic fac-
tors for 11Li are calculated for various channels, revealing the dominant 
role of the 9Li ground state configuration. The 11Li(ℏ, 𝑉)9Li cross section 
calculations are compared to experimental data, showing reasonable 
agreement. The inclusion of core excitations and the use of microscopic 
overlap integrals within the RGM framework offer a valuable tool for 
investigating the structure of halo nuclei through (ℏ, 𝑉) reactions.

The dependence of the cross section at 𝜎 = 0◦ has been analyzed, 
and suggests that the 6He(ℏ, 𝑉)4He cross section could be larger and at 
energies (𝐵lab ≈ 50 MeV). Generally speaking, measurements at other 
energies would be useful to assess theoretical models.

The present model goes beyond traditional DWBA calculations, 
where the projectile and residual-nucleus wave functions are described 
in the simple potential model, neglecting the internal structure. Of 
course a fully microscopic approach would be desirable, but is currently 
not feasible, essentially for two reasons: (𝜃) we are considering weakly 
bound halo nuclei and a scattering model should include these proper-
ties. A microscopic cluster study of 6He and of 11Li is possible [26], but 
is very demanding in terms of computer capabilities. Adding an incident 
particle means that a double angular-momentum projection is necessary 
which would still considerably increase the computer times. (𝜃𝜃) More 
important, a reaction such as 11Li+p , even at low energies, presents 
many open channels which cannot be accounted for in a microscopic 
theory. The use of optical potentials, which simulate the absorption to 
these open channels, is therefore unavoidable.
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How to probe the dipole component?

A bold guess:

The (p,pN) reaction should leave the residual core
 9Li in an excited state  (1- ⊗𝜋p3/2  ) that could decay 
to 8Li by neutron emission



Conclusions

A description based on the PVC including some key fenomenological
 parameters can give  a rather  accurate description of several structure 
and reaction data in nuclei with A ∼ 10-15  with one and two valence nucleons. 

This helps to develop a more unified treatment of structure and reactions
and to identify some of the main many-body mechanisms involving 
the dynamics of the core.

A quantitative check of the predicted core admixtures 
requires challenging experiments.
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We obtain a 2n separation energy  S2n  =  0.33 MeV, close to the exp. value. 
Neglecting the Argonne n-n interaction decreases this value by less than 100 
keV. The bare interaction is not efficient in coupling low-angular momentum  
extended wavefunctions. 
Most of the binding comes from the coupling to vibrations.

It is difficult to compare with other calculations, which start from single-
particle states fitted to the exp. values (different potentials for s- and p-
waves) and use different n-core potentials and/or density dependent 
interactions.

49 EFFECTS OF ' Li VIRTUAL STATES ON THE STRUCTURE. . . 1905

the evidence is not yet conclusive. Such unnatural-parity
intruder states could arise [12] from the coupling of core
excitation with neutrons in the 8d shell. In the present
work we examine the effects on the Li structure of in-
creasing the depth of the 8-wave n—Li potential to give
various 18~/2 virtual-state scattering lengths, while keep-
ing the p-wave potential to give a Opq~2 resonance be-
tween +0.15 and +0.50 MeV.
Since there remains ambiguity in the shape of the n-
Li potential, we consider the Woods-Saxon geometry of
[10), and vary the s- and p-wave strengths V, and V~
and spin-orbit strength V, to fit specified 1s scattering
lengths and Op~~2 resonance energies. We keep the Op3/2
bound state at —4.1 MeV, the observed Li neutron sep-
aration energy, and orthogonalize the halo neutron wave
functions to this state as well as to the deep 08q~2 occu-
pied state. We use the realistic super-soft-core nn poten-
tial (SSC) [20]. The Faddeev three-body wave functions
now contain a superposition of (Opq~2) and (lsiy2) con-
figurations, with (two-dimensional) radial wave functions
decaying asymptotically according to the three-body sep-
aration energy E~q. These energies are shown in Fig. 1,
and Table I selects those parameter combinations which
give binding energies nearest to —0.32 MeV [6,7]. These
ground state binding energies depend only weakly on the
potential geometry once its s- and p-wave pole positions
are specified, so we show only the results for a set of
Woods-Saxon potentials PO—P4 with various depths, and
ro ——1.27 fm (R = 9 ~ ro) and a = 0.67 fm for both cen-
tral and spin-orbit components.
Comparing the PO and P3 calculations in Table I, the

inclusion of a 18 virtual state has increased the weight
of the si~2 state of n-core motion from 3% to 45%, and
the iSo state of nn relative motion &om 38% to 60'%%up.

This gives a greater pairing contribution to the binding
energy. The rms matter radius is increased (&om 3.05 fm
to 3.64 fm) because s waves lead to a weaker "centrifugal
barrier" which governs the asymptotic decay rate of the
three-body wave function in the hyper-radius p (defined
byp220 +2 + 10+2)
The Faddeev wave functions for Li can also be used

in the Serber model of spectator/participant breakup to
yield the momentum distributions of @Li fragments [2,3].

I I I

- l3--&V = VS PQ--- Q-11 fm 1s scattering length
Q--6-18 fm

Q-27 fm~—P-44 fm—Observed b.e.

Q

P'
~
'0~"
p%J V8 Q' O'

-0 40—

ooo—

-0.10
Q)

Q)

-0.20
OC
JD
~— -0.30—

I' ~
, ~ ~ ~ 'I ~ ~

~ ~.~ ~ '
~ ~ I

-0.50
0.15 0.20

I I

0.25 0.30 0.35 0.40 0.45 0.50
Op„, resonance energy (MeV)

FIG. 1. Variation of the Li three-body binding energy
with the Op&/& resonance energy, for various positions of the
1szg2 virtual-state pole. The cases nearest the observed —0.32
MeV [6,7] are listed in Table I.

This model works well for sHe &agmentation [21], and for
iiBe [22]. It was a puzzle in Ref. [10] that the Fourier dis-
tributions of the (Opi~2) 2-dominated wave functions were
twice as wide as the data of [2], as can seen again for the
data of [3] with the upper curves in Fig. 2. The narrow
widths are not expected to be caused by the reaction
mechanism, because Ref. [23] shows for sHe &agmenta-
tion that the distribution of the "core" &agment is only
weakly affected by final-state interactions. For neutrons
the discrepancy between the calculated Serber and em-
pirical momentum distributions [4] is greater than for the
core, but, by [23], final state interactions must be more
important here.
Including Li virtual states helps to resolve this puz-

zle. The Serber width for the Li &agment decreases &om
73 MeV/c for PO to 31 MeV/c for P3. The distributions
are shown in Fig. 2(a), and the distributions limited for
the aperture of [3] in Fig. 2(b). The large decrease in
width arises because, in momentum as well as in coordi-
nate space, s waves are finite at the origin while p waves
have a node there. The P4 combination (with the largest

TABLE I. Effect of low-lying 1s intruder states: Binding energies Ezz, rms radii, weights of
selected channels, and Serber widths without and with the experimental acceptances of [3]. The
SSC nn potentials were used. All Opq/2 eigenstates are at E = —4.1 MeV. The matter rms radius
of Li is taken as 2.32 fm. The last line shows the effect of a 08-state scattering length ap = —13
fm [25]. Note that weights, momentum distributions and rms radii only use the wave functions out
to hyper-radius p = 50 fm.

PO
P1
P2
P3
P4
G1

1s (Os)
ap
(fm)
0.7
—11
—18
—27
—44
(-»)

Opi/2
reson.
(MeV)
0.175
0.22
0.25
0.30
0.35

g.S.
(MeV)
—0.33
—0.32
—0.32
—0.33
—0.31
—0.31

R (s,g2)
rms weight
(fm) (%)
3.05 3
3.28 23
3.39 31
3.64 45
3.73 64
3.40 97

(pi)2)'
wt.
(%)
94
72
64
51
30
1

'Sp (nn)
wt.
(%)
38
52
53
60
67
96

Pg (nn)
wt.
(%)
59
44
37
29
16
4

p~ ('Li)
hwhm
(MeV/c)
73
38
35
31
28
35

p( Li) [3]
hwhm
(MeV jc)
40
28
27
26
25
31
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Charge radius : an indication of core polarization
4 The charge radius

.
The charge radius in Be isotopes has been precisely measured. In particular, Rc(10 Be)

= 2.361 fm and Rc(11 Be) = 2.466 fm,
In the independent particle limit, adding a neutron to 11Be in an orbital of radius rn ⇡

3 fm, should lead to a very small modification of the charge radius of 10Be due to the recoil
of the center of mass:

< r2 >11Be=< r2 >10 Be+ (rn/11)
2 ⇡ 2.3612 + 0.07fm2 (13)

The coupling to phonons brings an extra correction which is proportional to the admixture
↵ of the 2+ phonon in the ground state. One obtains

< r2 >11Be=< r2 >10Be +(3/11)2 + ↵�2 < r2 >10Be (14)

= 2.3612 + 0.07 + 0.2 ⇤ 0.72 ⇤ 2.3612 = 2.3612 + 0.07 + 0.546 = 6.19 = (2.49)2fm2, (15)

where we have used the value �2 = 0.7 for the deformation of the 10Be, and which is in good
agreement wth the experimental value. Actually, the charge radius is probably the best test
of the admixture factor.

5 Calculations using a restricted number of single-particle
levels

.
Using the program SIMAN, we can study in detail the renormalization e↵ects using a

basis of just five levels :1p3/2 (occupied in 10Be) and 2s1/2, 1p1/2, 1d5/2 and 1d3/2 (empty).
The deep 1s1/2 level is not included.
We use a reference Saxon-Woods potential, with V0 = �43.9 MeV ; R= 2.693 fm, a = 0.7

fm, which produces the following single-particle energies in a box of R = 20 fm (in MeV):

✏1p3/2= - 8.05; ✏2s1/2= 0.21; ✏1p1/2= - 3.25; ✏1d5/2= 1.54; ✏d3/2= 1.70,

where the positive energies of course depend on the box radius.
The values of the single-particle energies are similar to those obtained according to Bohr-

Mottelson’s parametrisation of the Saxon-Woods potential, which is slightly more attractive
:

V0 = �51 +
33(N � Z)

A
MeV ; a = 0.67 fm; ; R = 1.27A1/3, (16)

corresponding to V0 = �44.4 MeV ; R= 2.74 fm for Z = 4 and A = 10, are

✏1p3/2 = - 8.95 ; ✏2s1/2 = -0.17 ; ✏1p1/2 = - 3.91 ; ✏1d5/2 = 1.44 ; ✏d3/2= 1.70.

The phase shifts obtained in the two potentials are shown in Fig. 1. It is seen that the
d5/2 phase shift has a resonant character; �5/2 = ⇡/2 for E ⇡ 3.5 MeV. The old value of 5
MeV was produced using a=0.8 fm and Vls = 0.9.
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