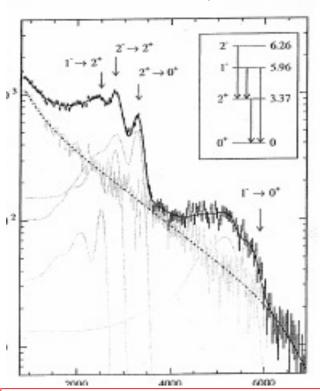

Enrico Vigezzi INFN Milano

A dynamical model of light neutron halos

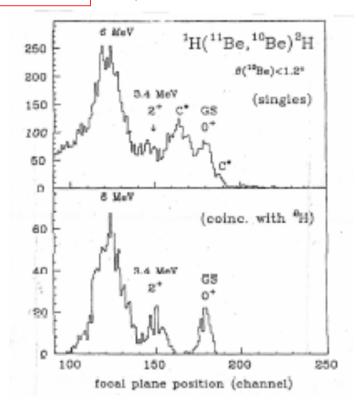
In collaboration with
Francisco Barranco
Gregory Potel
University of Sevilla

Halo40 Symposium, Bejing, 13-17 October 2025

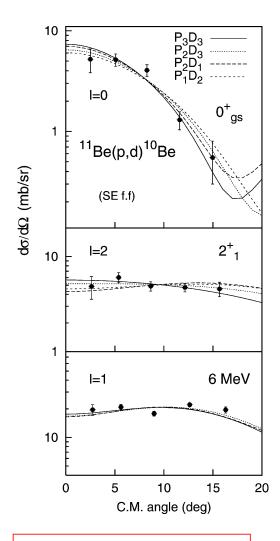
In 1997 Kuo et al predicted that in halo nuclei core polarization would be suppressed, and that the fundamental nucleon-nucleon interaction could be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei....


T.T.S. Kuo et al, PRL 78 (1997) 2708

... But experiments demonstrated that the core dynamics plays an important role...


The admixture of $d_{5/2}$ x 2⁺ configuration in the $1/2^+$ g.s. of ¹¹Be is about 15%

p(11Be,10Be)d

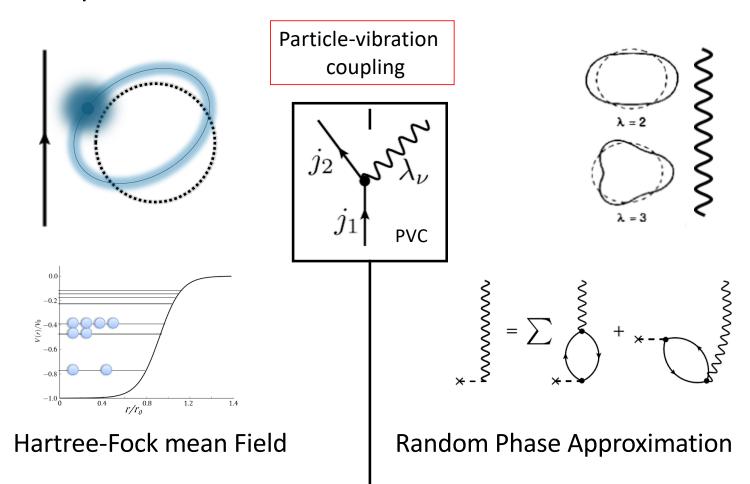

9Be(11Be,10Be+γ)X

T. Aumann et al. PRL 84 (2000) 35

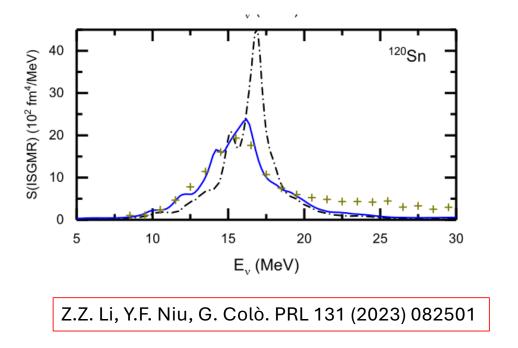
S. Fortier et al. Phys. Lett. B461 (1999)22 J.S. Winfield et al., Nucl.Phys. A683 (2001)48

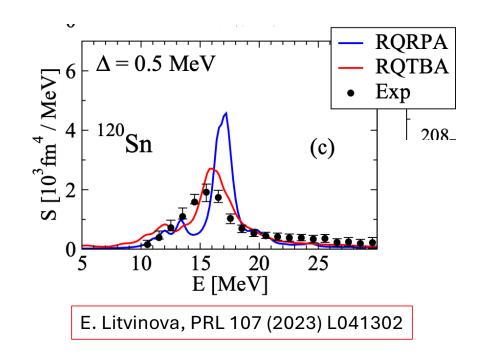
J.S. Winfield et al., Nucl.Phys. A683 (2001)48

A careful analysis of transfer reactions is needed to estimate phonon admixtures in the wavefunctions


$$|^{11}\text{Be}_{gs}\rangle = \alpha |^{10}\text{Be}(0^+) \otimes 2s\rangle + \beta |^{10}\text{Be}(2^+) \otimes 1d\rangle$$

Good agreement with 2+ cross sections is obtained in DWBA with β^2 = 0.17 considering the coupling effects on the transfer form factor; using β as a simple spectroscopic factor one finds β^2 = 0.28


Can we obtain a consistent description of halos in terms of elementary modes of excitation including some core degrees of freedom?


Independent Particles

Collective Phonons

Particle-vibration coupling on top of self-consistent density functional calculations has been mostly applied to heavy nuclei near closed shells. It provides a successful reproduction of the width of giant resonance modes

... although the situation is less clear concerning the centroids and the renormalization c single particle states

The Particle Vibration Coupling Hamiltonian:

$$H = H_{vib} + H_p + H_{PVC}$$

$$H_{\text{Vib}} = \sum_{\lambda\mu} \hbar \omega_{\lambda} [\Gamma_{\lambda\mu}^{+.} \Gamma_{\lambda\mu} + 1/2] \qquad \qquad \qquad \text{Collective (} \quad \mathbf{\Gamma_{\lambda\mu}^{+}} \text{ creates a phonon)}$$

$$H_{p} = -\hbar^{2}/2m \ d^{2}/dr^{2} + V(r) + V_{ls}(r) \qquad \qquad \qquad \text{Single-particle}$$

$$H_{\text{PVC}} = \sum_{\lambda\mu} -r dV/dr \beta_{\lambda} Y_{\lambda\mu} [\Gamma_{\lambda\mu}^{+.} + (-1)^{\mu} \Gamma_{\lambda\mu}] \qquad \qquad \qquad \text{Linear interaction}$$

Def. parameter

$$H\Psi_a = \tilde{E}\Psi_a$$

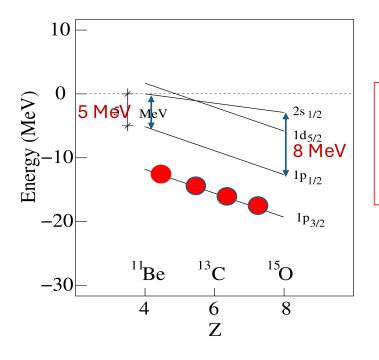
An early interpretation of parity inversion: dynamical coupling between the core and the loosely bound neutron

VOLUME 70, NUMBER 10

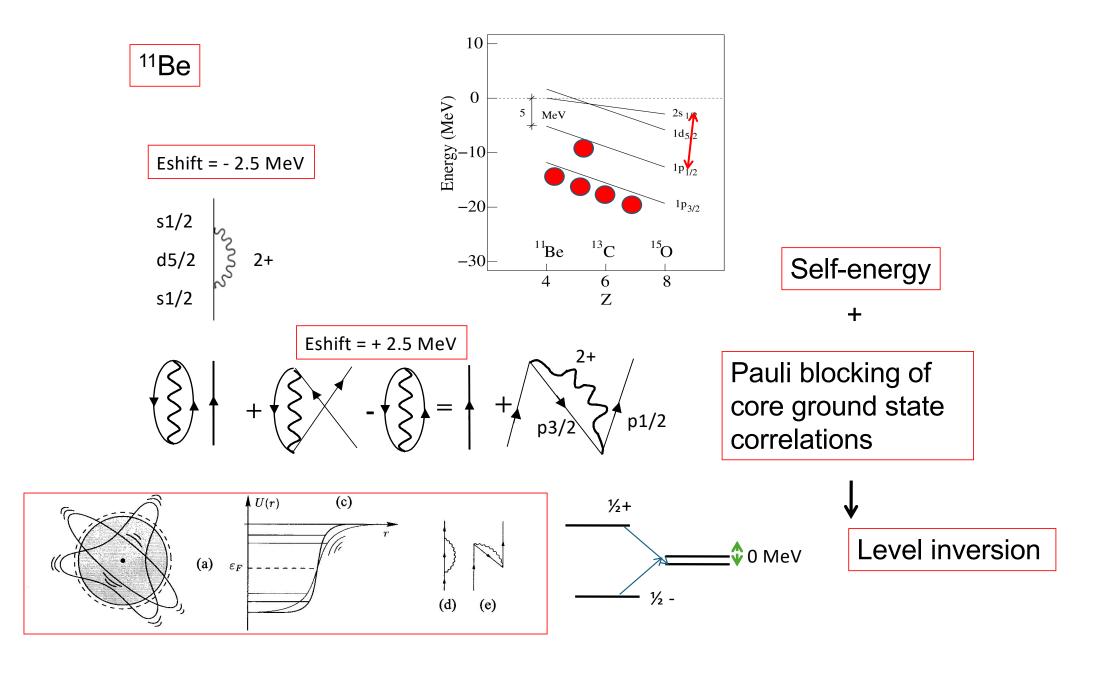
PHYSICAL REVIEW LETTERS

8 MARCH 1993

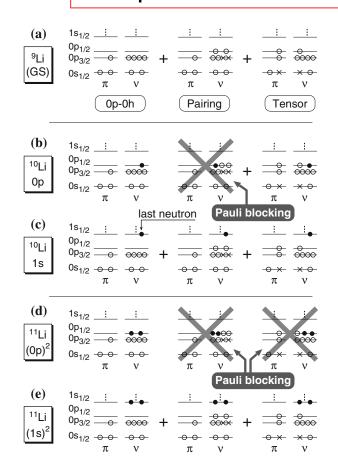
Structure of Exotic Neutron-Rich Nuclei


Takaharu Otsuka, Nobuhisa Fukunishi, and Hiroyuki Sagawa

Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan


(Received 13 November 1992)

A new framework, the variational shell model, is proposed to describe the structure of neutron-rich unstable nuclei. An application to 11 Be is presented. Contrary to the failure of the spherical Hartree-Fock model, the anomalous $\frac{1}{2}$ * ground state and its neutron halo are reproduced with the Skyrme (SIII) interaction. This state is bound due to dynamical coupling between the core and the loosely bound neutron, which oscillates between the $2s_{1/2}$ and the $1d_{3/2}$ orbits.


Parity inversion in N=7 isotones is not reproduced by spherical mean field obtained from non relativistic energy density functionals.

Typical spherical mean-field results with Skyrme forces (Sagawa, Brown, Esbensen PLB 309(93)1)

Comparison with the model by Ikeda, Myo et al.

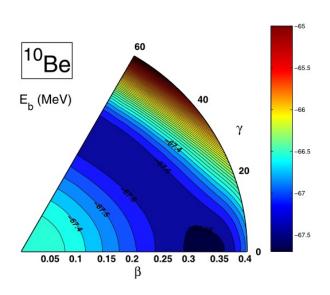
The $p_{1/2}$ orbit is pushed up by pairing correlations and tensor force. Only 3/2-configurations are included: coupling to core vibrations (1/2-) is not considered. Binding energy is given as input. $50\%(s^2)$ - $50\%(p^2)$ wavefunction is obtained

K. Ikeda et al, Lect. Notes in Physics 818 (2010) The core: spherical or deformed?
Important role of fluctuations expected in light nuclei
We propose a dynamical description based on Nuclear Field Theory

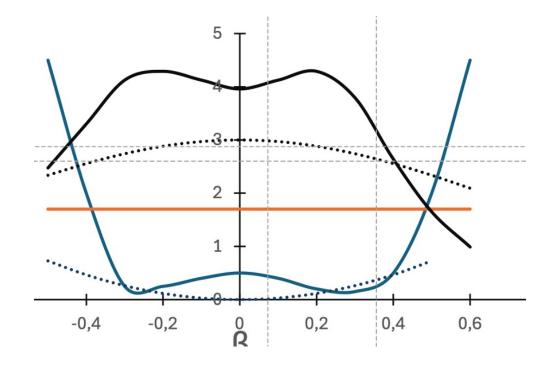
N. Vinh Mau, Nucl. Phys. A 592 (1995) 43

G.F. Esbensen and H. Sagawa, Phys. Rev C 51 (1995)1274

P. Descouvemont, Nucl. Phys. A 626 (1997) 647


F.M. Nunes and I. Thompson, Nucl. Phys. A 703 (2002) 593

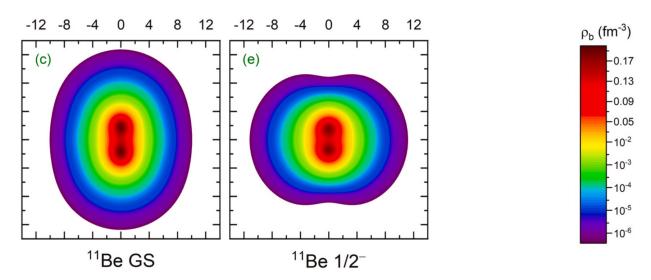
I. Hamamoto and S. Shimoura, J. Phys. G 34 (2007) 2715


G. Blanchon et al., Phys Rev. C 82 (2010) 034313

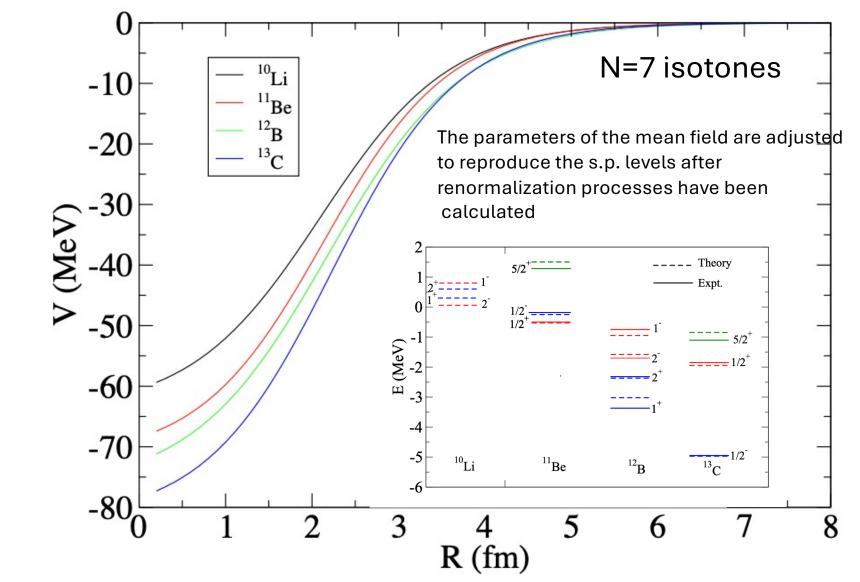
T. Myo et al, PRC 86 (2012) 024318

We assume a rather shallow energy surface, in which the microscopic collective wavefunction has a reasonable overlap with a wavefunction centered at β =0 , with a value of $<\beta^2>$ derived from the experimental B(E2), according to the collective model .

Y. Zhang, H. Sagawa et al., PTP 120 (2008) 129

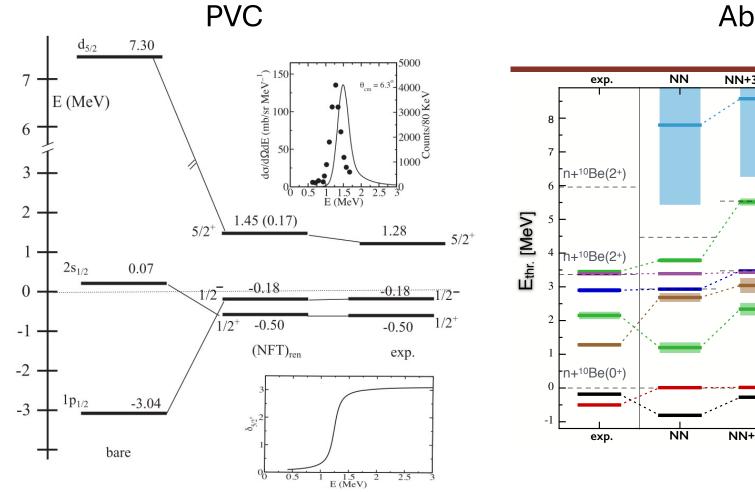


Dynamical picture:

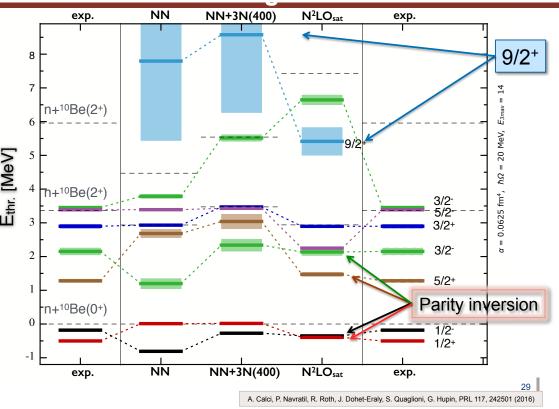

Quadrupole fluctuations in the excited state are blocked by Pauli principle

Static picture:

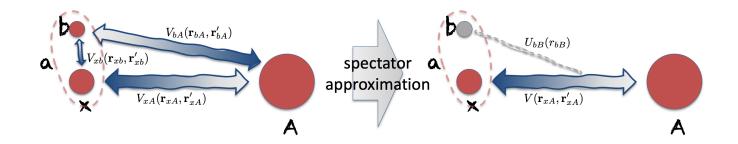
The excited state is associated with a much smaller deformation



J. Geng et al., PLB 858 (2024) 139036



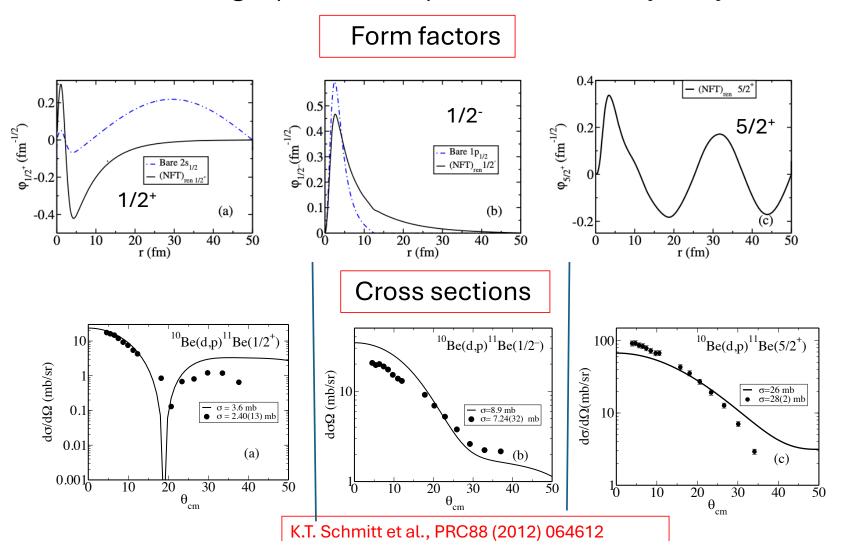
F. Barranco et al., PRL 119 (2017) 082501 PRC 101 (2020) 031305(R) The description of the experimental results from complementary approaches can be of great interest


¹¹Be

Ab Initio

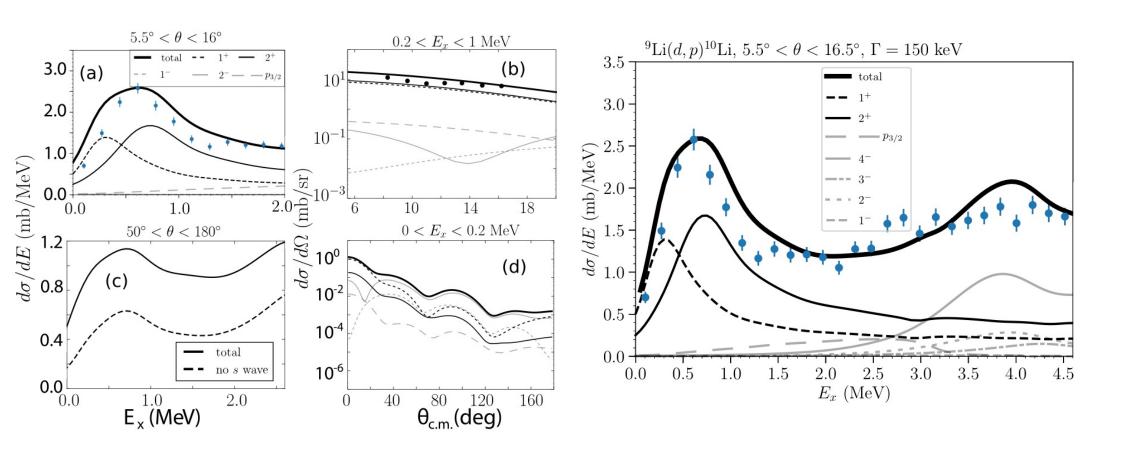
Transfer reaction populating states of the continuum

Green Function Transfer: allows to obtain the cross section as a function of the energy of the "spectator" particle b using the x-A microscopic self-energy


$$\frac{d\sigma_R^I(E, E_b)}{dE_b} = \frac{2\mu}{\hbar^2 k_x} \langle \psi_0^I | \text{Im} \mathcal{V}(E - E_b) | \psi_0^I \rangle \rho(E_b).$$

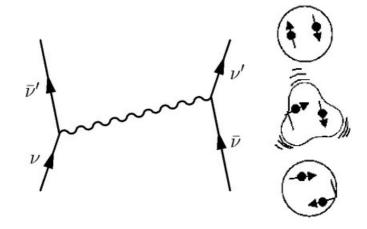
G. Potel, F. M. Nunes, and I. J. Thompson, Phys. Rev. C 92, 034611 (2015)

G. Potel et al, EPJ A 53 (2017) 178


 10 Be(d,p) 11 Be at E_d = 21.4 MeV

Test of the single-particle component of the many-body wavefunction

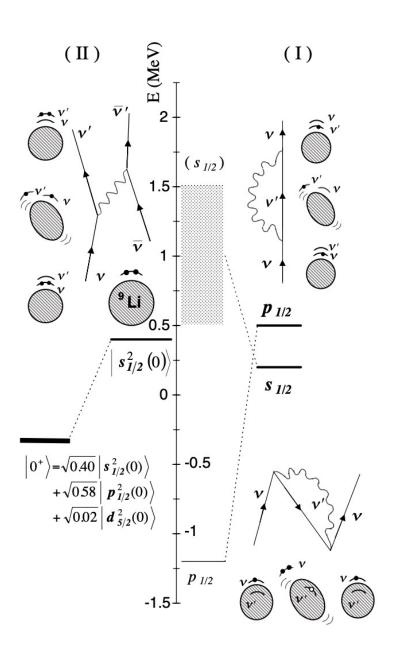
¹⁰Li and the ⁹Li(d,p)¹⁰Li reaction


F. Barranco et al, Phys. Rev. C 101 (2020) 031305(R)

¹¹Li structure

Two new elements in ¹¹Li:

- a) The existence of a collective low-lying1- vibration
- b) The pairing interaction receives an important contribution from the interaction induced by the exchange of collective vibrations, including the 1-



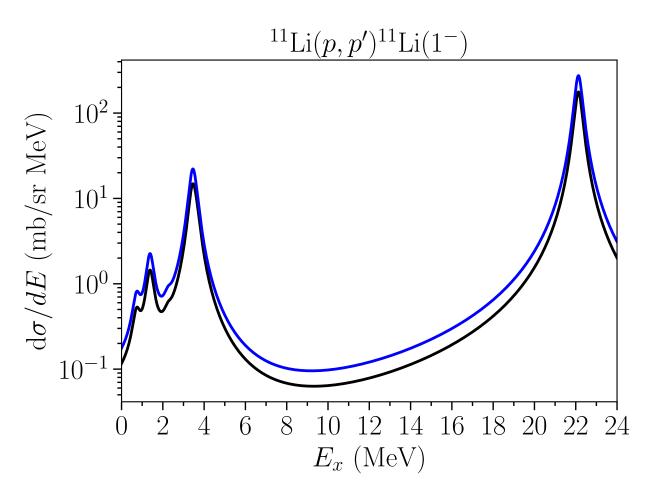
1 wavefunction /low-lying strength

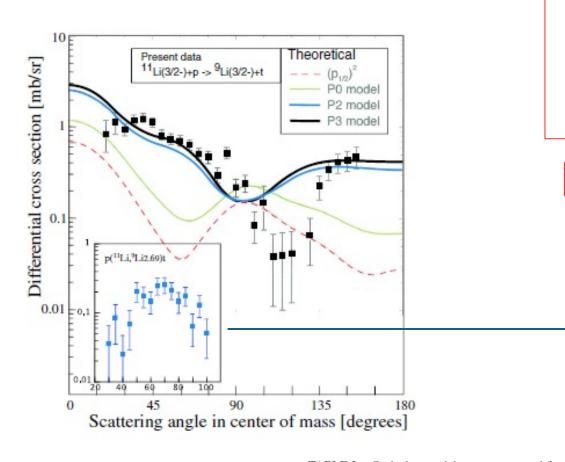
	$1p_{1/2}^{-1}2s_{1/2}$	$1p_{1/2}^{-1}3s_{1/2}$	$1p_{1/2}^{-1}4s_{1/2}$	$1p_{1/2}^{-1}1d_{3/2}$		$1p_{3/2}^{-1}5d_{5/2}$	$1p_{3/2}^{-1}6d_{5/2}$	$1p_{3/2}^{-1}7d_{5/2}$
$X_{\rm ph}$	0.847	-0.335	0.244	0.165	П	0.197	0.201	0.157
$Y_{ m ph}$	0.088	0.060	0.088	0.008		0.165	0.173	0.138

Valence transitions

Transitions involving core states

11Li correlated wave function


$$|\tilde{0}\rangle = |0\rangle + 0.7|(ps)_{1^{-}} \otimes 1^{-}; 0\rangle + 0.1|(sd)_{2^{+}} \otimes 2^{+}; 0\rangle$$

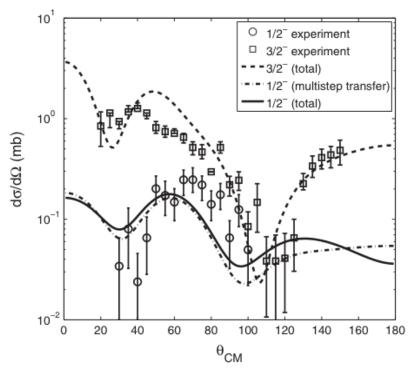

$$|0\rangle = 0.45|s_{1/2}^2(0)\rangle + 0.55|p_{1/2}^2(0)\rangle + 0.04|d_{5/2}^2(0)\rangle$$

¹¹Li

F. Barranco et al. EPJ A11 (2001) 385

Calculation of the inelastic scattering from the soft mode to GDR: Analysis of the corresponding experiment underway (Y. Ayyad et al.)

Probing ¹¹Li halo-neutrons correlations via (p,t) reaction

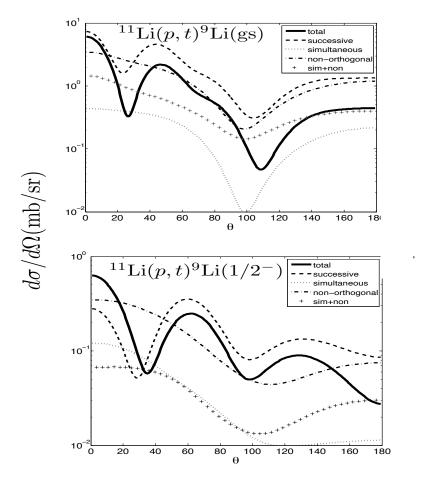

I. Tanihata et al, PRL 100 (2008) 192502

Unique information: angular distribution associated with the excited state of the ⁹Li core

TABLE I. Optical potential parameters used for the present calculations.

	V MeV	r_V fm	a_V fm	W MeV	W_D MeV	r_W fm	a_W fm	V_{∞} MeV	$r_{\rm so}$ fm	a _{so} fm
$p + {}^{11}\text{Li} [10]$	54.06	1.17	0.75	2.37	16.87	1.32	0.82	6.2	1.01	0.75
$d + {}^{10}\text{Li}$ [11]	85.8	1.17	0.76	1.117	11.863	1.325	0.731	0		
$t + {}^{9}\text{Li} [12]$	1.42	1.16	0.78	28.2	0	1.88	0.61	0		

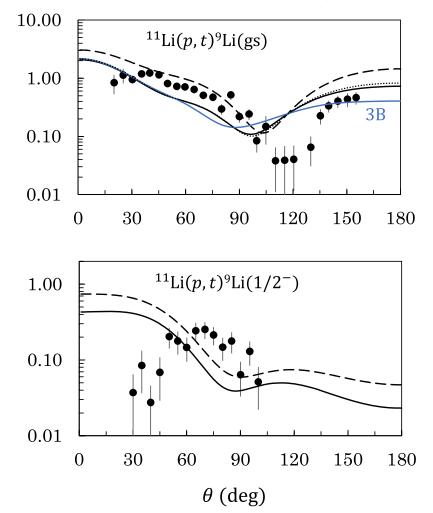
Calculation of absolute two-nucleon transfer cross section by finite-range DWBA calculation


$$|\tilde{0}\rangle = |0\rangle + 0.7|(ps)_{1^-} \otimes 1^-; 0\rangle + 0.1|(sd)_{2^+} \otimes 2^+; 0\rangle$$

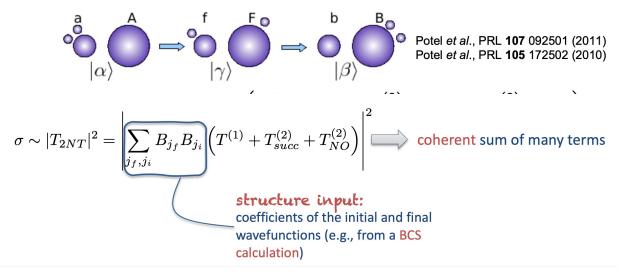
Essential component to populate the excited state of the core

This calculation should be repeated by other groups!

	$\sigma(^{11}\text{Li(gs)} \rightarrow ^{9}\text{Li (i)) (mb)}$		
i	ΔL	Theory	Experiment
gs (3/2 ⁻)	0	6.1	5.7 ± 0.9
2.69 MeV (1/2 ⁻)	2	0.5	1.0 ± 0.36


G. Potel et al., PRL 105 (2010) 172502

11Li w.f.: 50% 1- admixture 1% 2+ admixture



11Li w.f.: 10% 2+ admixture

P. Descouvemont, PLB 862 (2025) 139356

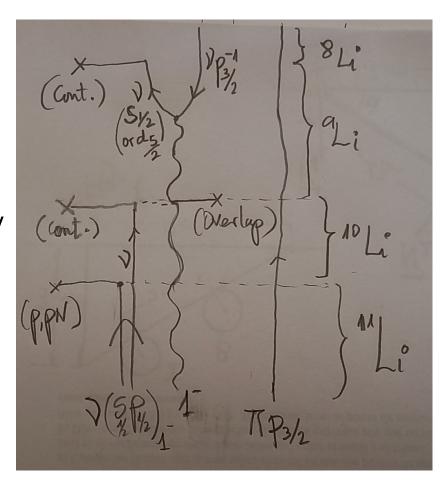
Second order DWBA

Successive transfer

$$T_{succ}^{(2)}(j_{i},j_{f}) = 2 \sum_{K,M} \sum_{\substack{\sigma_{1}\sigma_{2} \\ \sigma'_{1}\sigma'_{2}}} \int d\mathbf{r}_{fF} d\mathbf{r}_{b1} d\mathbf{r}_{A2} [\Psi^{j_{f}}(\mathbf{r}_{A1},\sigma_{1}) \Psi^{j_{f}}(\mathbf{r}_{A2},\sigma_{2})]_{0}^{0*}$$

$$\times \chi_{bB}^{(-)*}(\mathbf{r}_{bB}) v(\mathbf{r}_{b1}) [\Psi^{j_{f}}(\mathbf{r}_{A2},\sigma_{2}) \Psi^{j_{i}}(\mathbf{r}_{b1},\sigma_{1})]_{M}^{K}$$

$$\times \int d\mathbf{r}_{fF}' d\mathbf{r}_{b1}' d\mathbf{r}_{A2}' G(\mathbf{r}_{fF},\mathbf{r}_{fF}') [\Psi^{j_{f}}(\mathbf{r}_{A2}',\sigma'_{2}) \Psi^{j_{i}}(\mathbf{r}_{b1}',\sigma'_{1})]_{M}^{K}$$


$$\times \frac{2\mu_{fF}}{\hbar^{2}} v(\mathbf{r}_{f2}') [\Psi^{j_{i}}(\mathbf{r}_{b2}',\sigma'_{2}) \Psi^{j_{i}}(\mathbf{r}_{b1}',\sigma'_{1})]_{0}^{0} \chi_{aA}^{(+)}(\mathbf{r}_{aA}')$$

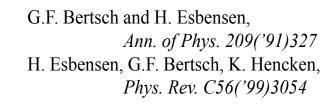
How to probe the dipole component?

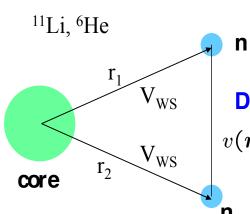
$$|\tilde{0}\rangle = |0\rangle + 0.7|(ps)_{1^{-}} \otimes 1^{-}; 0\rangle + 0.1|(sd)_{2^{+}} \otimes 2^{+}; 0\rangle$$

A bold guess:

The (p,pN) reaction should leave the residual core 9 Li in an excited state (1 $^-\otimes\pi p_{3/2}$) that could decay to 8 Li by neutron emission

Conclusions


A description based on the PVC including some key fenomenological parameters can give a rather accurate description of several structure and reaction data in nuclei with A \sim 10-15 with one and two valence nucleons.


This helps to develop a more unified treatment of structure and reactions and to identify some of the main many-body mechanisms involving the dynamics of the core.

A quantitative check of the predicted core admixtures requires challenging experiments.

THE INERT CORE MODEL

Three-body model with density-dependent delta force

Density-dependent delta-force

$$v(r_1, r_2) = v_0(1 + \alpha \rho(r)) \times \delta(r_1 - r_2)$$

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

Comparison with the model by Bertsch and Esbensen

OUR MODEL

Ann. Phys.209(1991)327 PRC56(1997)3054

Single-particle potential

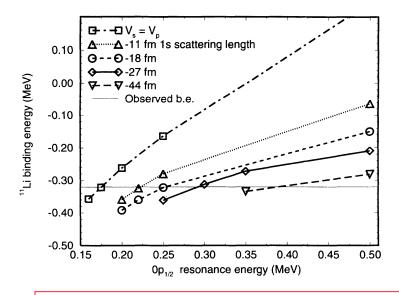
Standard Bohr-Mottelson

Depth adjusted to experimental p_{1/2} single particle energy

2-body interaction

Bare Argonne interaction+ particle-vibration coupling with phenomenological parameters (low-lying vibrations) Strength fitted to S_{2n} in $^{12}{\rm Be}$

$$v_{\rm eff}({\bf r}_1,\,{\bf r}_2) = \delta({\bf r}_1 - {\bf r}_2) \left(v_0 + v_\rho \left(\frac{\rho_c(({\bf r}_1 + {\bf r}_2)/2)}{\rho_0} \right)^P \right).$$


Results

Good reproduction of binding energies in ¹²Be and ¹¹Li 50% (s_{1/2})²

Good reproduction of binding energy Low (s_{1/2})² admixture unless two different s.p. potentials are used We obtain a 2n separation energy $S_{2n} = 0.33$ MeV, close to the exp. value. Neglecting the Argonne n-n interaction decreases this value by less than 100 keV. The bare interaction is not efficient in coupling low-angular momentum extended wavefunctions.

Most of the binding comes from the coupling to vibrations.

It is difficult to compare with other calculations, which start from single-particle states fitted to the exp. values (different potentials for s- and p-waves) and use different n-core potentials and/or density dependent interactions.

I.J. Thompson and M.V. Zhukov, PRC 49 (1994) 1904

Charge radius: an indication of core polarization

The charge radius in Be isotopes has been precisely measured. In particular, $R_c(^{10} \text{ Be}) = 2.361 \text{ fm}$ and $R_c(^{11} \text{ Be}) = 2.466 \text{ fm}$,

In the independent particle limit, adding a neutron to ¹¹Be in an orbital of radius $r_n \approx$ 3 fm, should lead to a very small modification of the charge radius of ¹⁰Be due to the recoil of the center of mass:

$$\langle r^2 \rangle_{11Be} = \langle r^2 \rangle_{10} Be + (r_n/11)^2 \approx 2.361^2 + 0.07 fm^2$$
 (13)

The coupling to phonons brings an extra correction which is proportional to the admixture α of the 2⁺ phonon in the ground state. One obtains

$$< r^2 >_{11Be} = < r^2 >_{10Be} + (3/11)^2 + \alpha \beta^2 < r^2 >_{10Be}$$
 (14)

$$= 2.361^{2} + 0.07 + 0.2 * 0.7^{2} * 2.361^{2} = 2.361^{2} + 0.07 + 0.546 = 6.19 = (2.49)^{2} \text{fm}^{2}, \quad (15)$$

where we have used the value $\beta_2 = 0.7$ for the deformation of the ¹⁰Be, and which is in good agreement with the experimental value. Actually, the charge radius is probably the best test of the admixture factor.