Microscopic study of halo nuclei through (p,t) reactions

Pierre Descouvemont

Université Libre de Bruxelles, Belgium

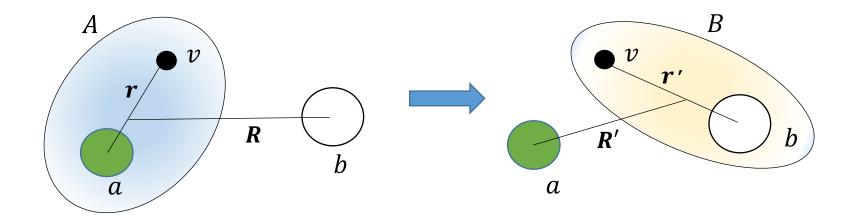
- 1. Introduction
- 2. Transfer cross sections
- The Resonating Group Method (RGM)
 Overlap integrals for:
 - One-nucleon transfer: (d,p), (d,n): *simpler*
 - Two-nucleon transfer: (p,t)
- 4. Application to ${}^{6}\text{He}(p,t)\alpha$
- 5. Application to ¹¹Li(p,t)⁹Li (+ core excitations)
- 6. Conclusion

Ref.: P.D., Phys. Lett. B 862, 139356 (2025).

1. Introduction

Transfer reactions are important in nuclear physics:

(d,p) reactions used for a long time: provide information on the residual nucleus (spin, parity)
 A(d,p)B with B=A+n: the cross section is very sensitive to L between A and n



- In nuclear astrophysics:
 - Direct measurements, examples: $^{13}C(\alpha,n)^{16}O$, $^{15}N(p,\alpha)^{16}O$, $^{18}F(p,\alpha)^{15}O$, etc.
 - indirect tool to probe the nucleus near the threshold

Example: ¹²C(⁷Li,t)¹⁶O provides spectroscopic properties of ¹⁶O levels

1. Introduction

Two main topics

1. Microscopic models

- Reactions (elastic, capture, transfer, etc.) at low energies/
- Spectroscopy of light nuclei

2. Transfer reactions

- Important in nuclear astrophysics
- Indirect method for spectroscopy
- DWBA approximation

Can we combine both?

- One-particle transfer:
 Ref.: P.D., Eur. J. Phys. A58 (2022) 193
 Ex: ¹⁶C(d,p)¹⁷C
- Two-particle transfer

 More complicated

 Ex: ⁶He(p,t)⁴He, ¹¹Li(p,t)⁹Li

Common input: overlap integrals

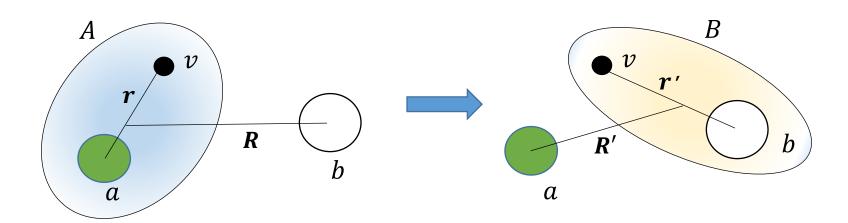
- One neutron: ¹⁷C=¹⁶C+n (one coordinate)
- Two neutrons: ⁶He=⁴He+n+n

 ¹¹Li=⁹Li+n+n

(two coordinates)

Transfer reactions are **difficult**:

• Two-body projectile: at least a 3-body model (+coupled-channel problem)

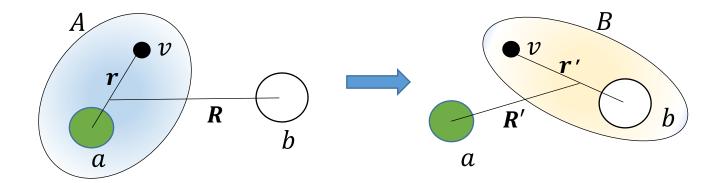


- Interactions are different in the entrance and exit channels
- 4 coordinates (r,r',R,R') but only 2 are independent \rightarrow r and r' expressed as a function of R and R'
- Needs many inputs
 - optical potentials for b+A and a+B
 - \circ Bound-state potentials (\rightarrow overlap integrals) for A=a+v and B=b+v
 - Spectroscopic factors for A and B
- The theoretical formalism is well established
 - G. R. Satchler, Direct Nuclear Reactions, Oxford (1983) (+many others).

 Theory not "simple" but does not require long computer times (several public codes)

Transfer cross section

- Initial state i = A + b
- Final state f = a + B



Integrated cross section

$$\sigma_{if}(E) = \frac{\pi}{k^2} \sum_{I\pi} \frac{2J+1}{(2I_1+1)(2I_2+1)} \left| U_{if}^{J\pi}(E) \right|^2$$

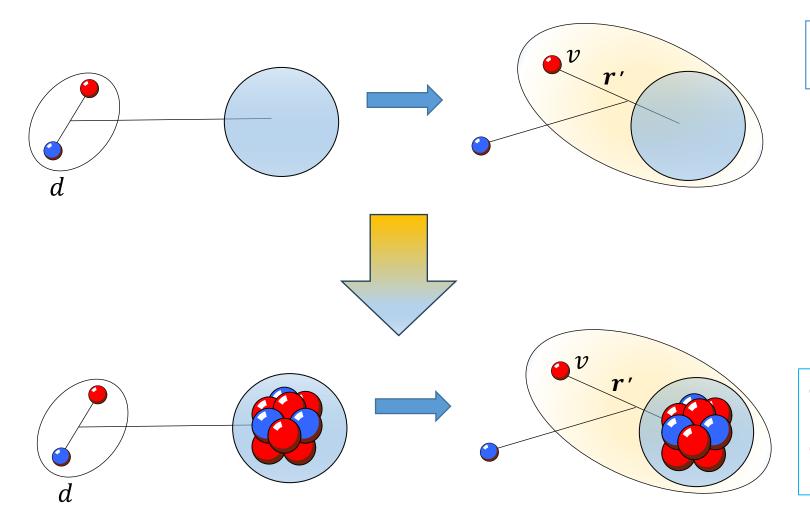
- Definition common to all models
- Differential cross section $\frac{d\sigma_{if}}{d\Omega}$: more complicated [also involves the scattering matrices $U_{if}^{J\pi}(E)$]

scattering matrices $U_{if}^{J\pi}(E)$ (spin neglected)

$$U^{J\pi} = \begin{pmatrix} U_{ii} & U_{if} \\ U_{fi} & U_{ff} \end{pmatrix} \text{ elastic scattering } i \rightarrow i$$
 transfer $i \rightarrow f$ elastic scattering $f \rightarrow f$

→ The calculation of the scattering matrices is the main issue in scattering problems

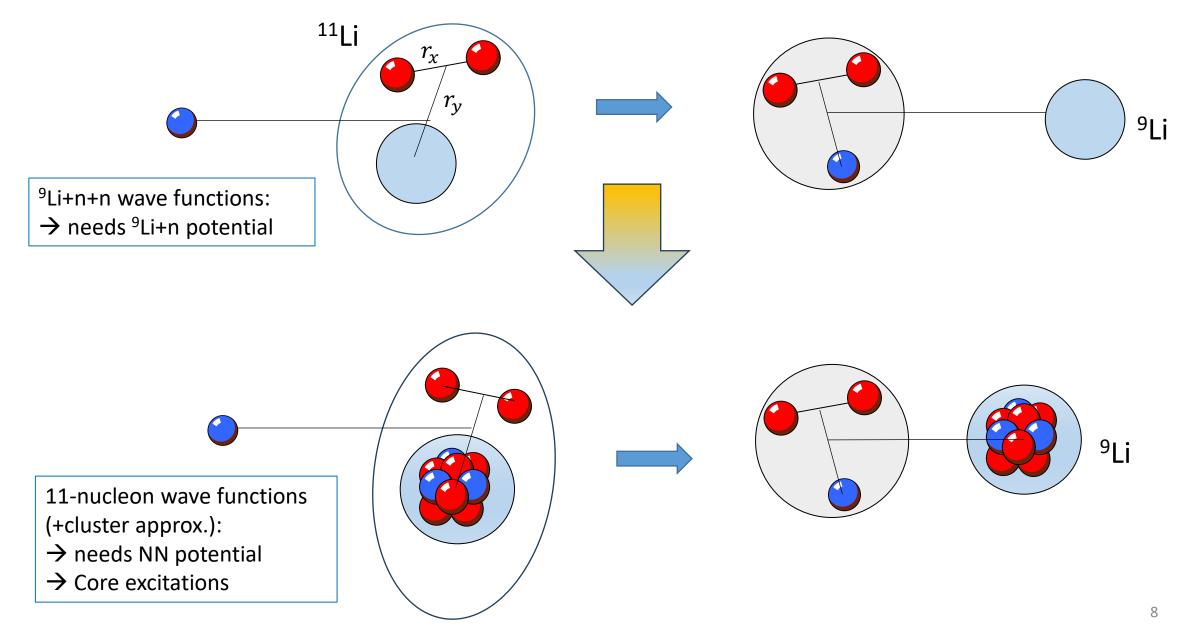
Various approaches One-particle transfer



- Standard DWBA method
- The structure of a,b,v is neglected

- Microscopic wave functions of the residual nucleus are needed
- RGM method (based on NN interaction)

Two-particle transfer: much more complicated!



Cross section computed from the scattering matrices (general formula at the DWBA approximation)

$$U_{if} = -\frac{i}{\hbar} \iint \chi_i(R) K_{i,f}(R,R') \chi_f(R') dR dR'$$

scattering wave functions in the **entrance channel:** optical potential

Scattering wave functions in **the exit channel:** optical potential

transfer kernel: computed from the BS wave functions and the potentials

One-nucleon transfer: b=1, B=A+1:

$$K_{i,f}(R,R') = \phi_d(r) \times \Delta V(R,r) \times I(r')$$

- with $I(r') = \langle \phi_A | \phi_{A+1} \rangle$ = overlap integral (reduced width amplitude)
- ΔV =transition potential (p+n potential in (d,p) reactions, α +t potential in (7 Li,t) reactions)
- Two-nucleon transfer: Similar form with $I(r', s') = \langle \phi_A | \phi_{A+2} \rangle$
- \rightarrow Main problem: to determine the overlap integrals I(r) or I(r', s')
- \rightarrow Spectroscopic factor $S = \int |I(r)|^2 dr$ or $S = \int |I(r,s)|^2 dr ds$

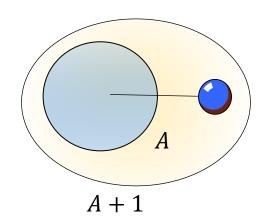
Standard DWBA: the target A has no structure

$$\phi_{A+1} = \phi_A u(r)$$

With u(s) determined from $\left[-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dr^2}-\frac{l(l+1)}{r^2}\right)+V_f(r)\right]u_f(r)=E_fu_f(r)$, $V_f(r)=A+n$ potential with energy E_f

$$\rightarrow I(r) = \langle \phi_{A+1} | \phi_A \rangle = u_f(r)$$

 \rightarrow A spectroscopic factor is needed: $I(r) = \sqrt{S_f} \ u_f(r)$ (additional parameter)



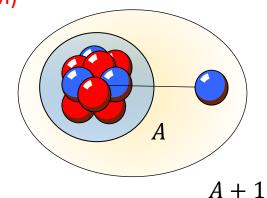
Present method: Resonating Group Method (RGM)

The nucleon structure is included

$$\phi_{A+1} = \mathcal{A}\phi_A\phi_n u(r)$$

$$\rightarrow I(r) = \langle \phi_{A+1} | \phi_A \rangle \neq u(r)$$

Spectroscopic factor: $S = \int |I(r)|^2 dr$ is $\neq 1$ =output of the calculation (not fitted)



3. The Resonating Group Method (RGM)

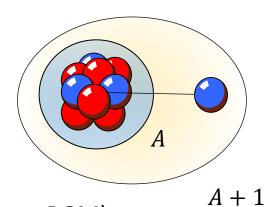
3. The Resonating Group Method (RGM)

Microscopic cluster model

Hamiltonian: $H = \sum_{i} T_i + \sum_{i < j} V_{ij}$

 T_i = kinetic energy of nucleon i

V_{ii} = nucleon-nucleon **effective** interaction (Minnesota, Volkov)



Total wave function: $\phi_{A+1} = \mathcal{A}\phi_A\phi_n u(r)$ (=Resonating Group Method definition – RGM)

Overlap integral in the RGM

$$I(r)=<\phi_A|\phi_{A+1}>$$
 =integral over the A internal coordinates difficult owing to the antisymmetrization

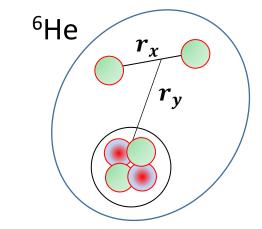
$$I(r) = \mathcal{N}u(r) = \int \mathcal{N}(r, r')u(r')dr'$$
 with $\mathcal{N}(r, r')$ =overlap kernel Technique proposed by K. Varga and R. G. Lovas, Phys. Rev. C **37**, 2906 (1988)

Can be generalized to 3-cluster overlap integrals $I(r,s) = \langle \phi_A | \phi_{A+2} \rangle$

3. The Resonating Group Method (RGM)

Two-neutron transfer reaction

- 3-cluster RGM approximation : $\Psi_A^{j\pi} = \mathcal{A}\varphi_{A-2}\varphi_n\varphi_ng^{j\pi}(\boldsymbol{r}_x,\boldsymbol{r}_y)$
- Use of hyperspherical coordinates

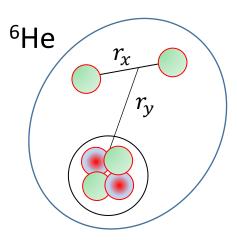


- RGM ⁶He: S. Korennov and P.D., Nucl. Phys. A740 (2004) 249
- RGM ¹¹Li: P. D.. *Phys. Rev.* C99 (2019), 064308
- Calculation of the 3-cluster overlap integrals [P. D., Phys. Rev. C 107, 014312 (2023)]
 - From $\Psi_A^{j\pi}$: $\rightarrow I_A(r_x, r_y) = \langle \varphi_{A-2} | \Psi_A^{j\pi} \rangle$
 - For ¹¹Li: calculation of $\langle \varphi_{9Li} | \Psi_{11}^{j\pi} \rangle$ and $\langle \varphi_{9Li*} | \Psi_{11}^{j\pi} \rangle \rightarrow$ acces to ¹¹Li(p,t)⁹Li*

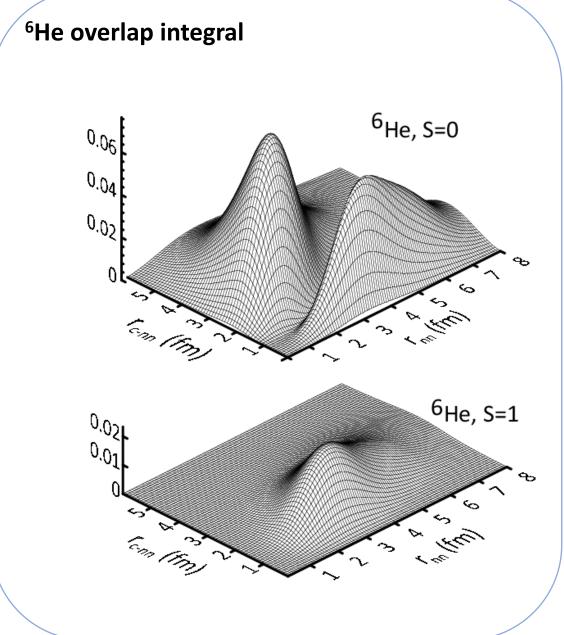
4. Application to 6 He(p,t) α

4. Application to 6 He(p,t) α

Description of ⁶He



- NN interaction: Minnesota + spin-orbit
- Admixture parameter adjusted to reproduce S_{2n} =0.97 MeV: u=1.0047
- 2 coordinates $P_c(r_x, r_y) = \int |I_c(r_x, r_y)|^2 d\Omega_x d\Omega_y$
- Spectroscopic factor $S = \int P_c(r_x, r_y) r_x^2 r_y^2 dr_x dr_y$ S=1.41 (good agreement with the literature)



4. Application to 6 He(p,t) α

Scattering matrix for a given $J\pi$

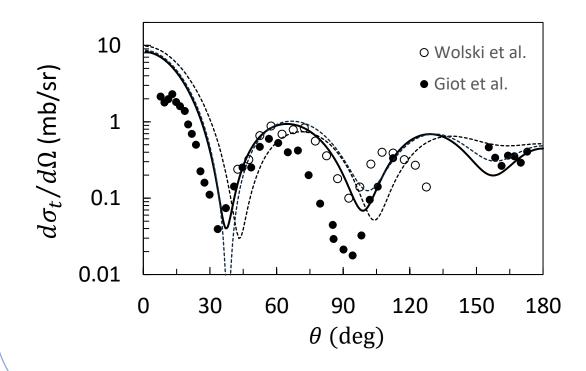
$$U_{if} = -\frac{i}{\hbar} \iint \chi_i(R) K_{i,f}(R,R') \chi_f(R') dR dR'$$

- Entrance channel ⁶He+p: $\chi_i(R)$ 2 choices for the optical potential
 - 1. Koning-Delaroche compilation *Nucl. Phys. A,* 713, 231 : solid lines
 - 2. Two potentials fitted on elastic scattering (Wolski et al.): dashed lines
- Exit channel α +t: $\chi_f(R')$ Potential from Giot et al., Phys. Rev. C **71**, 064311 (2005).
- Transfer kernel $K_{i,f}(R,R')$ Computed from the overlap integrals and the potentials (see PRC104 (2021) 024613)

⁶He(p,t)α cross section

Data from

- R. Wolski et al.,, Phys. Lett. B 467, 8 (1999).
- L. Giot et al., Phys. Rev. C 71, 064311 (2005).
 E_{lah}=150 MeV, E_{cm}=21.4 MeV



→ Weak influence of the ⁶He+p potential

Minnesota NN interaction adjusted to S_{2n}

⁹Li core: 6 neutrons, 3 protons: not a closed shell 15x6=90 Slater determinants

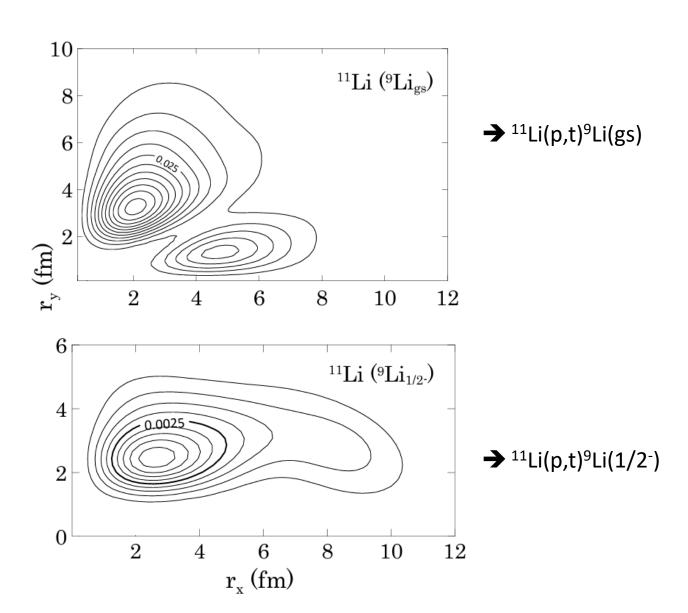
$$^{6}\text{He:}\ \Psi_{6}^{j\pi}= \overset{\mathcal{A}}{\mathcal{F}}\varphi_{\alpha}\varphi_{n}\varphi_{n}g^{j\pi}(\pmb{r}_{x},\pmb{r}_{y})$$

$$^{11}\text{Li:}\ \Psi_{11}^{j\pi}= \overset{}{\sum_{c}}\overset{\mathcal{A}}{\mathcal{F}}\varphi_{9Li}^{c}\varphi_{n}\varphi_{n}g_{c}^{j\pi}(\pmb{r}_{x},\pmb{r}_{y})$$

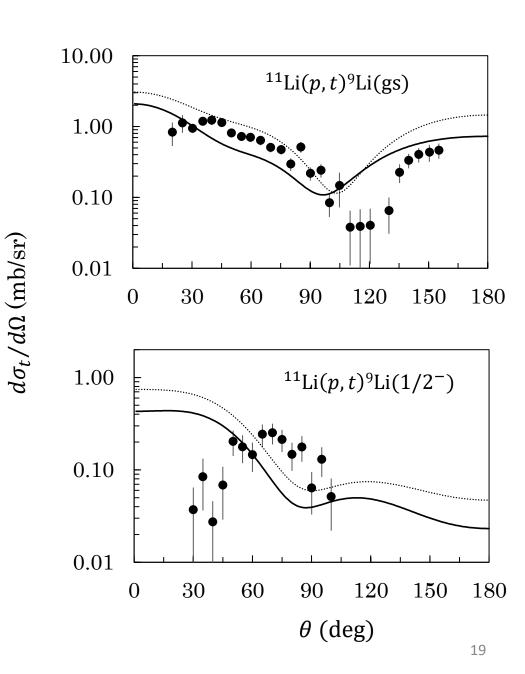
¹¹Li:
$$\Psi_{11}^{j\pi} = \sum_{c} \mathcal{A} \varphi_{9Li}^{c} \varphi_{n} \varphi_{n} g_{c}^{j\pi} (\boldsymbol{r}_{\boldsymbol{x}}, \boldsymbol{r}_{\boldsymbol{y}})$$

With φ_{9Li}^c =shell-model ⁹Li wave functions (combinations of 90 Slater determinants) c=3/2- gs, 1/2- excited state + others (Pseudostates)

⁹ Li core	Spectroscopic factor
3/2-	0.78 ($S_{12} = 0$) 0.13 ($S_{12} = 1$)
1/2-	$0.054 (S_{12} = 0),$ $0.050 (S_{12} = 1)$



- Data from I. Tanihata et al, Phys. Rev. Lett. 100, 192502 (2008):
 - ⁹Li ground state and 1st excited state
- E_{lab} =33 MeV \rightarrow E_{cm} =2.75 MeV
- ¹¹Li+p optical potential unknown at 2.75 MeV→ 2 potentials
 - Equivalent potential from a CDCC 4-body calculation [P. D., Phys. Rev. C 101, 64611 (2020)]
 - Koning-Delaroche global potential (KD03)
- ⁹Li+t: global potential of Y. Pang et al., Phys. Rev. C **79**, 24615 (2009).

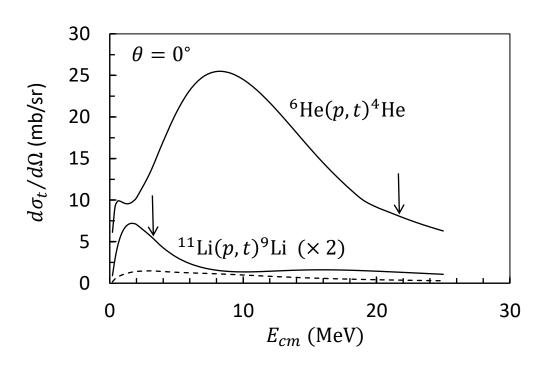


Energy dependence of the cross section

- Data are available at a single energy
- Calculations at several energies ($\theta=0^\circ$)
- ¹¹Li(p,t)⁹Li: 2.75 MeV is near the predicted maximum
- ⁶He(p,t)⁴He: 22 MeV is far from the maximum

→ Needs for theory

- Other energies
- Simultaneous measurement of transfer and elastic scattering
- Other nuclei? ¹⁴Be seems to be a good candidate



6. Conclusion

6. Conclusion

- Overlap integrals are simple to obtain in cluster models (very difficult in ab initio models)
- No need of spectroscopic factors, no need of (bound-state) potentials
- Core excitations are easily included
- Extended to three-cluster systems:
 - ⁶He(p,t)α
 - 11 Li(p,t) 9 Li with microscopic 11 Li wave functions (9 Li core more difficult than α)
- Reasonable agreement with experiment (no parameter)
- Elastic scattering data are important (preferably at the same energy)!
 - Excellent tests for theory
 - Determination of optical potentials (if necessary)