
1. Introduction

2. Transfer cross sections

3. The Resonating Group Method (RGM) 
Overlap integrals for:

• One-nucleon transfer: (d,p), (d,n): simpler

• Two-nucleon transfer: (p,t)

4. Application to 6He(p,t)

5. Application to 11Li(p,t)9Li  (+ core excitations)

6. Conclusion

Ref.: P.D., Phys. Lett. B 862, 139356 (2025).

1

Microscopic study of 
halo nuclei through 
(p,t) reactions

Pierre Descouvemont 

Université Libre de Bruxelles, 
Belgium



2

Transfer reactions are important in nuclear physics:

• (d,p) reactions used for a long time: provide information on the residual nucleus (spin, parity)
A(d,p)B with B=A+n: the cross section is very sensitive to L between A and n

• In nuclear astrophysics: 

• Direct measurements, examples: 13C(,n)16O, 15N(p,)16O, 18F(p,)15O, etc.

• indirect tool to probe the nucleus near the threshold

Example: 12C(7Li,t)16O provides spectroscopic properties of 16O levels

𝑹

𝒓

𝐴
𝑣

𝑎
𝑏

𝒓'

𝐵
𝑣

𝑎

𝑏𝑹′

1. Introduction



Two main topics
1. Microscopic models

• Reactions (elastic, capture, transfer, etc.) at low energies
• Spectroscopy of light nuclei 

2. Transfer reactions
• Important in nuclear astrophysics
• Indirect method for spectroscopy
• DWBA approximation

Can we combine both?
• One-particle transfer:

Ref.: P.D., Eur. J. Phys. A58 (2022) 193
Ex: 16C(d,p)17C

• Two-particle transfer 
More complicated
Ex: 6He(p,t)4He, 11Li(p,t)9Li

1. Introduction

Common input: overlap integrals
• One neutron: 17C=16C+n  (one coordinate)
• Two neutrons: 6He=4He+n+n

  11Li=9Li+n+n
(two coordinates) 



2. Transfer cross sections
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Transfer reactions are difficult:
• Two-body projectile : at least a 3-body model (+coupled-channel problem)

• Interactions are different in the entrance and exit channels

• 4 coordinates (r,r’,R,R’) but only 2 are independent → r and r’ expressed as a function of R and R’

• Needs many inputs 

o optical potentials for b+A and a+B
o Bound-state potentials (→overlap integrals) for A=a+v and B=b+v
o Spectroscopic factors for A and B

• The theoretical formalism is well established
G. R. Satchler, Direct Nuclear Reactions, Oxford (1983) (+many others).

Theory not “simple” but does not require long computer times (several public codes)
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2. Transfer cross sections



scattering matrices 𝑈𝑖𝑓
𝐽𝜋 𝐸 (spin neglected)

𝑈𝐽𝜋 =
𝑈𝑖𝑖 𝑈𝑖𝑓

𝑈𝑓𝑖 𝑈𝑓𝑓

elastic scattering i→i
transfer i→ f
elastic scattering f→f
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Transfer cross section 
• Initial state 𝑖 = 𝐴 + 𝑏
• Final state 𝑓 = 𝑎 + 𝐵

Integrated cross section

𝜎𝑖𝑓 𝐸 =
𝜋

𝑘2 ෍

𝐽𝜋

2𝐽 + 1

2𝐼1 + 1 2𝐼2 + 1
𝑈𝑖𝑓

𝐽𝜋 𝐸
2

 

• Definition common to all models
• Differential cross section 

𝑑𝜎𝑖𝑓

𝑑Ω
: more complicated [also involves the scattering 

matrices 𝑈𝑖𝑓
𝐽𝜋

𝐸 ]

➔ The calculation of the scattering matrices is the 
main issue in scattering problems

2. Transfer cross sections
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𝑑

𝒓'
𝑣

o Microscopic wave functions of 
the residual nucleus are needed

o RGM method (based on NN 
interaction)

𝑑

𝒓'
𝑣

o Standard DWBA method
o The structure of a,b,v is neglected

Various approaches
One-particle transfer

2. Transfer cross sections
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11Li

𝑟𝑦

𝑟𝑥

2. Transfer cross sections

Two-particle transfer: much more complicated!

9Li

9Li+n+n wave functions:
→ needs 9Li+n potential

11-nucleon wave functions 
(+cluster approx.):
→ needs NN potential
→ Core excitations

9Li



Cross section computed from the scattering matrices (general formula at the DWBA approximation)

𝑈𝑖𝑓 = −
𝑖

ℏ
∬ 𝜒𝑖 𝑅 𝐾𝑖,𝑓 𝑅, 𝑅′ 𝜒𝑓 𝑅′ 𝑑𝑅 𝑑𝑅′

scattering wave functions in the 
entrance channel: optical potential

Scattering wave functions in the 
exit channel: optical potential

transfer kernel: computed from the BS wave functions 
and the potentials
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• One-nucleon transfer: b=1, B=A+1:
𝐾𝑖,𝑓 𝑅, 𝑅′ = 𝜙𝑑 𝑟 × ΔV 𝑅, 𝑟 × 𝐼 𝑟′

• with  𝐼 𝑟′ =< 𝜙𝐴|𝜙𝐴+1 > =overlap integral (reduced width amplitude)
• Δ𝑉=transition potential (p+n potential in (d,p) reactions, +t potential in (7Li,t) reactions)

• Two-nucleon transfer: Similar form with  𝐼 𝑟′, 𝑠′ =< 𝜙𝐴|𝜙𝐴+2 >

→ Main problem: to determine the overlap integrals 𝐼(𝑟) or 𝐼 𝑟′, 𝑠′

→ Spectroscopic factor 𝑆 = ∫ 𝐼 𝑟 2𝑑𝑟 or 𝑆 = ∫ 𝐼 𝑟, 𝑠 2𝑑𝑟𝑑𝑠

2. Transfer cross sections
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Standard DWBA: the target A has no structure
 𝜙𝐴+1 = 𝜙𝐴𝑢(𝑟)

With 𝑢(𝑠) determined from −
ℏ2

2𝜇

𝑑2

𝑑𝑟2 −
𝑙 𝑙+1

𝑟2 + 𝑉𝑓 𝑟 𝑢𝑓 𝑟 = 𝐸𝑓𝑢𝑓(𝑟) ,    𝑉𝑓 𝑟 = 𝐴 + 𝑛 potential with energy 𝐸𝑓

→ 𝐼 𝑟 =< 𝜙𝐴+1 |𝜙𝐴 > = 𝑢𝑓(𝑟)

→ A spectroscopic factor is needed: 𝐼 𝑟 = 𝑆𝑓  𝑢𝑓 𝑟

 (additional parameter)

Present method: Resonating Group Method (RGM)
The nucleon  structure is included 

𝜙𝐴+1 = 𝒜𝜙𝐴𝜙𝑛𝑢(𝑟) 

→ 𝐼 𝑟 =< 𝜙𝐴+1 |𝜙𝐴 >≠ 𝑢 𝑟

Spectroscopic factor: 𝑆 = ∫ 𝐼 𝑟 2𝑑𝑟 is ≠ 1
=output of the calculation (not fitted)

𝐴 + 1

𝐴

𝐴 + 1

𝐴

2. Transfer cross sections



3. The Resonating Group Method (RGM)
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Microscopic cluster model

Hamiltonian: 𝐻 = σ𝑖 𝑇𝑖 + σ𝑖<𝑗 𝑉𝑖𝑗  

Ti = kinetic energy of nucleon i
Vij = nucleon-nucleon effective interaction (Minnesota, Volkov)

Total wave function: 𝜙𝐴+1 = 𝒜𝜙𝐴𝜙𝑛𝑢(𝑟)  (=Resonating Group Method definition – RGM)

Overlap integral in the RGM
𝐼 𝑟 =< 𝜙𝐴|𝜙𝐴+1 > =integral over the A internal coordinates

difficult owing to the antisymmetrization

𝑰 𝒓 = 𝓝𝒖 𝒓 = ∫ 𝓝 𝒓, 𝒓′ 𝒖 𝒓′ 𝒅𝒓′ with  𝒩 𝑟, 𝑟′ =overlap kernel
Technique proposed by K. Varga and R. G. Lovas, Phys. Rev. C 37, 2906 (1988)

Can be generalized to 3-cluster overlap integrals 𝐼(𝑟, 𝑠) =< 𝜙𝐴|𝜙𝐴+2 >
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𝐴 + 1

𝐴

3. The Resonating Group Method (RGM)
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Two-neutron transfer reaction

• 3-cluster RGM approximation :  Ψ𝐴
𝑗𝜋

= 𝒜𝜑𝐴−2𝜑𝑛𝜑𝑛𝑔 
𝑗𝜋(𝒓𝒙, 𝒓𝒚)

• Use of hyperspherical coordinates

• RGM 6He S. Korennov and P.D., Nucl. Phys. A740 (2004) 249

• RGM 11Li: P. D.. Phys. Rev. C99 (2019), 064308

• Calculation of the 3-cluster overlap integrals [P. D., Phys. Rev. C 107, 014312 (2023)]

• From Ψ𝐴
𝑗𝜋

: → 𝐼𝐴 𝒓𝒙, 𝒓𝒚 = ⟨𝜑𝐴−2|Ψ𝐴
𝑗𝜋

⟩

• For 11Li: calculation of ⟨𝜑9𝐿𝑖|Ψ11
𝑗𝜋

⟩ and ⟨𝜑9𝐿𝑖∗|Ψ11
𝑗𝜋

⟩ → acces to 11Li(p,t)9Li* 

6He

𝒓𝒚

𝒓𝒙

3. The Resonating Group Method (RGM)



4. Application to 6He(p,t)
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4. Application to 6He(p,t)

Description of 6He

• NN interaction: Minnesota + spin-orbit

• Admixture parameter adjusted to reproduce S2n=0.97 MeV: 

u=1.0047

• 2 coordinates 𝑃𝑐 𝑟𝑥, 𝑟𝑦 = ∫ |𝐼𝑐 𝒓𝒙, 𝒓𝒚 |2𝑑Ω𝑥𝑑Ω𝑦

• Spectroscopic factor 𝑆 = ∫ 𝑃𝑐 𝑟𝑥, 𝑟𝑦 𝑟𝑥
2𝑟𝑦

2𝑑𝑟𝑥𝑑𝑟𝑦

S=1.41 (good agreement with the literature)

6He overlap integral6He

𝑟𝑦

𝑟𝑥



6He(p,t) cross section
Data from 
• R. Wolski et al.,, Phys. Lett. B 467, 8 (1999).
• L. Giot et al., Phys. Rev. C 71, 064311 (2005).
Elab=150 MeV, Ecm=21.4 MeV

→Weak influence of the 6He+p potential

0.01

0.1

1

10

0 30 60 90 120 150 180

Wolski et al.

Giot et al.
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4. Application to 6He(p,t)

Scattering matrix for a given 𝐽𝜋

𝑈𝑖𝑓 = −
𝑖

ℏ
∬ 𝜒𝑖 𝑅 𝐾𝑖,𝑓 𝑅, 𝑅′ 𝜒𝑓 𝑅′ 𝑑𝑅 𝑑𝑅′

• Entrance channel 6He+p: 𝜒𝑖 𝑅
2 choices for the optical potential

 
1. Koning-Delaroche compilation Nucl. Phys. A, 

713, 231 : solid lines
2. Two potentials fitted on elastic scattering 

(Wolski et al.): dashed lines

• Exit channel +t: 𝜒𝑓 𝑅′

Potential from Giot et al., Phys. Rev. C 71, 064311 
(2005).

• Transfer kernel 𝐾𝑖,𝑓 𝑅, 𝑅′

Computed from the overlap integrals and the 
potentials (see PRC104 (2021) 024613)

𝜃 (deg)

Τ
𝑑

𝜎
𝑡

𝑑
Ω

(m
b

/s
r)



5. Application to 11Li(p,t)9Li 
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9Li core Spectroscopic factor

3/2⁻​ 0.78 (S₁₂ = 0)
0.13 (S₁₂ = 1)​

1/2⁻​ 0.054 (S₁₂ = 0),
0.050 (S₁₂ = 1)​

5. Application to 11Li(p,t)9Li

Minnesota NN interaction adjusted to 𝑆2𝑛

9Li core : 6 neutrons, 3 protons :not a closed shell
15x6=90 Slater determinants

6He: Ψ6
𝑗𝜋

= 𝒜𝜑𝛼𝜑𝑛𝜑𝑛𝑔 
𝑗𝜋(𝒓𝒙, 𝒓𝒚)

11Li: Ψ11
𝑗𝜋

= σ𝑐 𝒜𝜑9𝐿𝑖
𝑐 𝜑𝑛𝜑𝑛𝑔𝑐

𝑗𝜋
(𝒓𝒙, 𝒓𝒚)

With 𝜑9𝐿𝑖
𝑐 =shell-model 9Li wave functions 

(combinations of 90 Slater determinants)
c=3/2- gs, 1/2- excited state + others (Pseudostates)

➔
11Li(p,t)9Li(gs)

➔
11Li(p,t)9Li(1/2-)
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5. Application to 11Li(p,t)9Li

𝜃 (deg)

• Data from I. Tanihata et al, Phys. Rev. Lett. 100, 192502 
(2008): 
9Li ground state and 1st excited state

• Elab=33 MeV → Ecm=2.75 MeV

• 11Li+p optical potential unknown at 2.75 MeV→ 2 potentials

• Equivalent potential from a CDCC 4-body calculation [P. 
D., Phys. Rev. C 101, 64611 (2020)]

• Koning-Delaroche global potential (KD03)

• 9Li+t: global potential of  Y. Pang et al., Phys. Rev. C 79, 24615 
(2009).

11Li 𝑝, 𝑡 9Li(gs)

11Li 𝑝, 𝑡 9Li(1/2−)
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5. Application to 11Li(p,t)9Li

Energy dependence of the cross section

• Data are available at a single energy

• Calculations at several energies (𝜃 = 0∘)

• 11Li(p,t)9Li: 2.75 MeV is near the predicted maximum

• 6He(p,t)4He: 22 MeV is far from the maximum

→ Needs for theory

• Other energies

• Simultaneous measurement of transfer and elastic 
scattering

• Other nuclei? 14Be seems to be a good candidate



6. Conclusion
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• Overlap integrals are simple to obtain in cluster models (very difficult in ab initio models)

• No need of spectroscopic factors, no need of (bound-state) potentials

• Core excitations are easily included

• Extended to three-cluster systems: 
• 6He(p,t)
• 11Li(p,t)9Li with microscopic 11Li wave functions (9Li core more difficult than )

• Reasonable agreement with experiment (no parameter)

• Elastic scattering data are important (preferably at the same energy)!
o Excellent tests for theory
o Determination of optical potentials (if necessary)

6. Conclusion
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