
# A coherent microscopic picture for the exotic structure of <sup>11</sup>Be

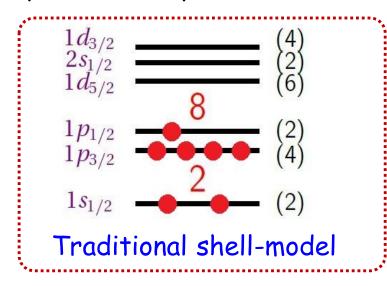
Jing Geng

Lanzhou University

Collaborators: Wenhui Long, Pengwei Zhao and Yifei Niu

International Symposium Commemorating the 40th Anniversary of the Halo Nuclei Beijing October 12 - 18, 2025

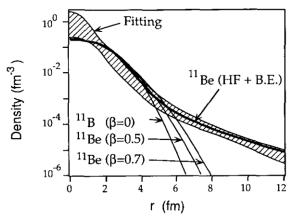



# Outline

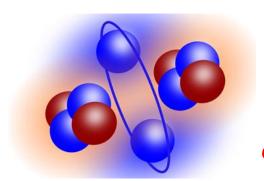
- □ Introduction
- □ Axially Deformed RHFB model
- □ The novel phenomena of <sup>11</sup>Be
- □ Summary

#### Novel Phenomena in <sup>11</sup>Be




□ Parity Inversion: p-shell nucleus with even-parity ground state




VS



□ Halo Structure



□ Underlying Cluster structure



 $^{11}$ Be =  $^{10}$ Be + 1n

Does the <sup>11</sup>Be ground state exhibit a cluster structure?

## Theoretical Research for novel phenomena



□ Shell model Parity inversion and Halo structure

Otsuka, et. al., PRL 70 (1993) 1385; Sagawa, et. al., PLB 309 (1993) 1

The direct picture of cluster structure?

☐ Antisymmetrized molecular dynamics method Parity inversion and Cluster structure

Y. Kanada-En'yo, et. al., PRC 66 (2002) 024305

It is not easy to describe the halo structure due to the limitation of Gaussian function

□ Ab initio Parity inversion, Halo and Cluster structure

no-core shell model with continuum: continuum effects and three-nucleon interaction

A. Calci, et. al., PRL 117 (2016) 242501, Atkinson, et.al., PRC 105, (2022) 054316

nuclear lattice effective field theory with the N3LO interaction

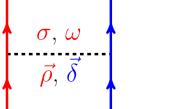
S. H. Shen, et. al., PRL 134 (2025) 162503

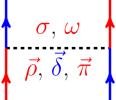
□ Energy Density Functional Theory Halo structure

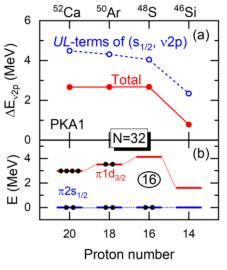
Skyrme-Hartree-Fock model Relativistic Mean Field model

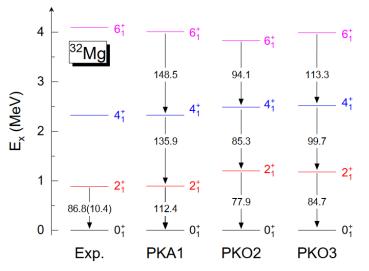
J. C. Pei, et. al., NPA 765 (2006) 29; X. Li, et. al., PRC 54 (1996) 1617

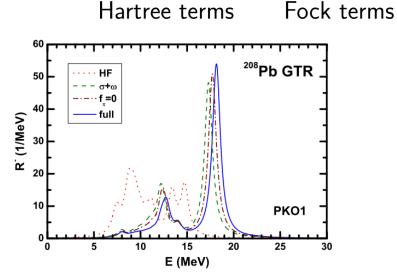
Can not describe the parity inversion correctly


# Relativistic Hartree-Fock theory





□ Relativistic Hartree-Fock (RHF) theory: contains the Fock term explicitly


Bouyssy (1987), Bernardos (1993), Shi (1995), Marcos (2004), Long (2004-now), .....


 Fock terms play an important role in the ground state and excited state for nucleus: tensor force, Lorentz tensor vertex











J.Liu, et,al., PLB 806 (2020) 135524

Y. Peng, et.al., CPC 49, 064112 (2025)

H. Z. Liang, et,al., PRL 101 122502 (2008)

Axially deformed Relativistic Hartree-Fock-Bogoliubov (D-RHFB) model

PRC 105, 034329 (2022)

unified treatment for tensor force, deformation, pairing correlations and continuum effects



Find the unified description for novel phenomena of <sup>11</sup>Be in mean field level <sup>5</sup>

#### D-RHFB model



Hamiltonian of systems:  $\phi = \sigma$ -S,  $\omega$ -V,  $\rho$ -V,  $\rho$ -T,  $\rho$ -VT,  $\pi$ -PV, A-V

$$H = \int d\boldsymbol{x} \bar{\psi}(\boldsymbol{x}) \big( -i\boldsymbol{\gamma} \cdot \boldsymbol{\nabla} + M \big) \psi(\boldsymbol{x}) + \frac{1}{2} \sum_{\phi} \int d\boldsymbol{x} d\boldsymbol{x}' \bar{\psi}(\boldsymbol{x}) \bar{\psi}(\boldsymbol{x}') \Gamma_{\phi} D_{\phi} \psi(\boldsymbol{x}') \psi(\boldsymbol{x}).$$
 Kinetic term Two-body interaction term

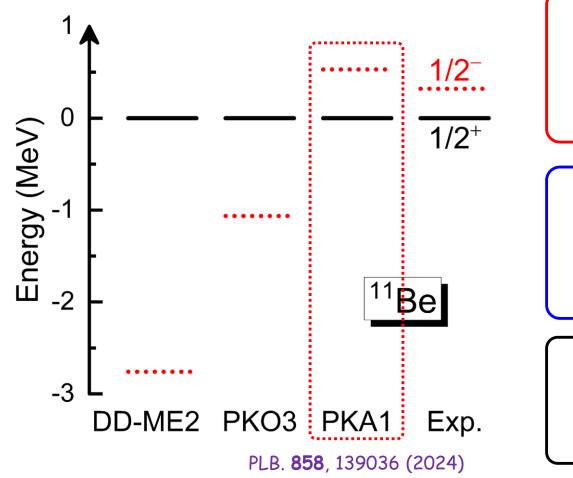
- Quantization in Bogoliubov quasi-particle space
- $\psi(x) = \sum \left| \psi_k^U(x)\beta_k + \psi_{\tilde{k}}^V(x)\beta_k^{\dagger} \right|$

Two-body interaction term

$$\begin{split} \widehat{V}_{\phi} = & \frac{1}{2} \iint d \pmb{x}_1 d \pmb{x}_2 \sum_{k_1 k_1'} \sum_{k_2 k_2'} \left[ \bar{\psi}_{\tilde{k}_1}^V(x_1) \bar{\psi}_{\tilde{k}_2}^V(x_2) \Gamma_{\phi} D_{\phi} \psi_{\tilde{k}_2'}^V(x_2) \psi_{\tilde{k}_1'}^V(x_1) \beta_{k_1} \beta_{k_2} \beta_{k_2'}^{\dagger} \beta_{k_1'}^{\dagger} \right] \\ + & \frac{1}{2} \iint d \pmb{x}_1 d \pmb{x}_2 \sum_{k_1 k_1'} \sum_{k_2 k_2'} \left[ \bar{\psi}_{\tilde{k}_1}^V(x_1) \bar{\psi}_{k_2}^U(x_2) \Gamma_{\phi} D_{\phi} \psi_{k_2'}^U(x_2) \psi_{\tilde{k}_1'}^V(x_1) \beta_{k_1} \beta_{k_2}^{\dagger} \beta_{k_2'} \beta_{k_1'}^{\dagger} \right] \\ \text{Pairing} \end{split}$$

PKO3 and PKO1
PKA1
$$\sigma\text{-S}, \ \omega\text{-V}, \ \rho\text{-V}, \ A\text{-V}, \ \pi\text{-PV} \ \text{and} \ \rho\text{-T}$$

$$\Gamma_{\rho\text{-T}} = \frac{1}{4M^2} \left( f_\rho \sigma_{\nu k} \vec{\tau} \partial^k \right)_x \left( f_\rho \sigma^{\nu l} \vec{\tau} \partial_l \right)_{x'} \propto Y_{20}$$


$$\Gamma_{\rho\text{-T}} = \frac{1}{4M^2} \left( f_{\rho} \sigma_{\nu k} \vec{\tau} \partial^k \right)_x \left( f_{\rho} \sigma^{\nu l} \vec{\tau} \partial_l \right)_{x'} \propto Y_{20}$$

RMF model and PKO2

Enhance the deformation effects

# Parity inversion



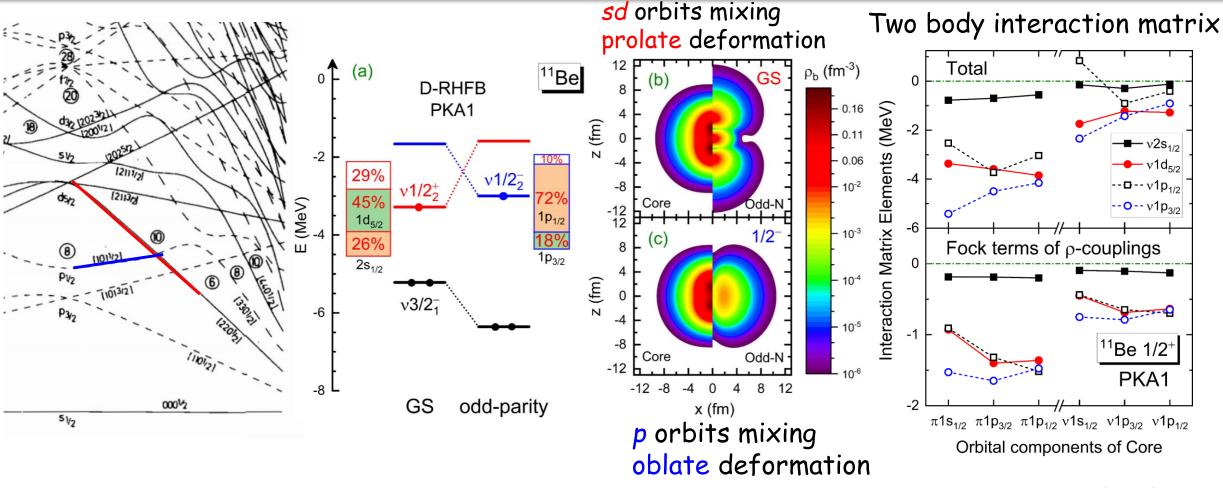


#### PKA1

$$\sigma$$
-S,  $\omega$ -V,  $\rho$ -V  $\pi$ -PV,  $\rho$ -T

#### PKO3

$$\sigma$$
-S,  $\omega$ -V,  $\rho$ -V  $\pi$ -PV


DD-ME2

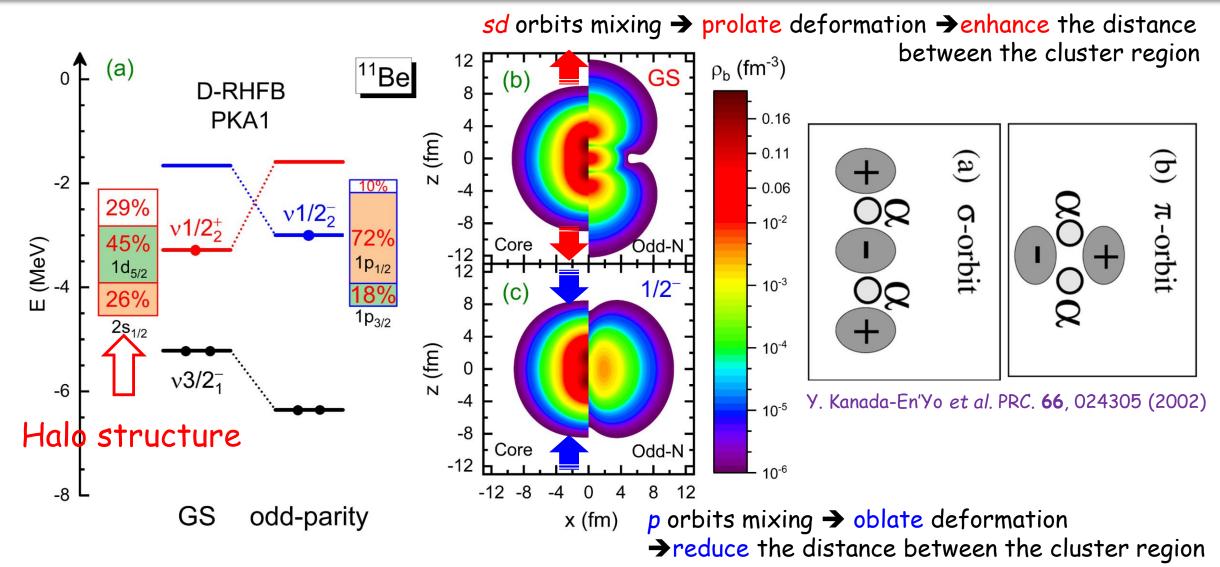
$$\sigma$$
-S,  $\omega$ -V,  $\rho$ -V

Only PKA1 correctly describes the positive-parity g.s. for <sup>11</sup>Be, as well as the neighboring excited negative-parity ones

### Microcosmic mechanism of parity inversion



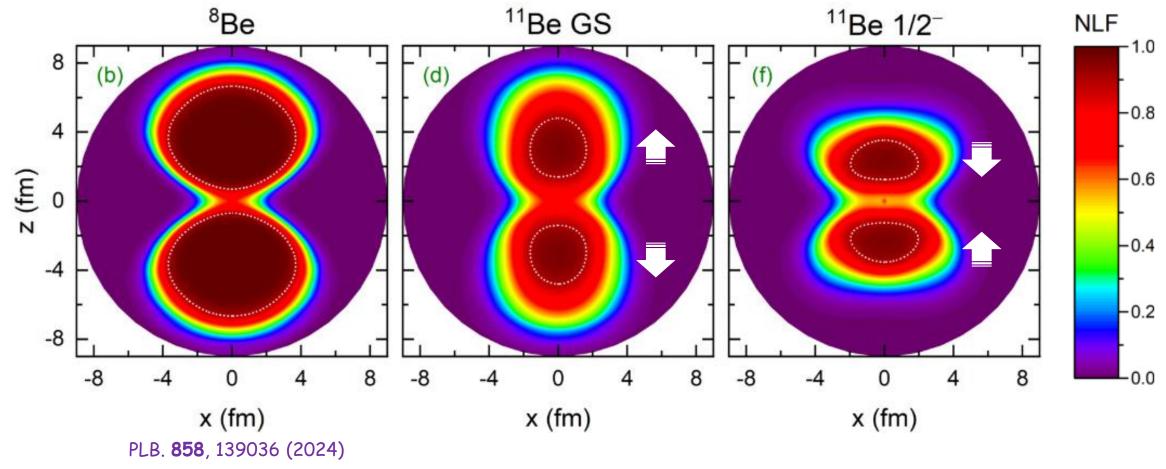



PLB. **858**, 139036 (2024)

- $\square$  sd-shell intrude to the p-shell  $\rightarrow$  large deformation (mean field level)
- $\Box$   $\rho$ -T coupling enhance the coupling between the valence orbital and core

CPC. 47, 044102 (2023)

#### Parity Inversion and Halo structure






□ Much more notable halo is illustrated in even-parity g.s., in contrast to odd-parity one

#### Parity Inversion and Cluster structure





- □ Nucleon Localization Function (NLF) Reinhard, et.al., PRC 83, 034312 (2011)
- Much more notable cluster structure is illustrated in positive-parity ground state, in contrast to negative-parity one

# Summary



- $\Box$  the coherence of the parity inversion, the halo, and the underlying cluster structure of  $^{11}$ Be has been verified by using the D-RHFB model.
- $\Box$  There exists a significant mixing of the  $2s_{1/2}$  and  $1d_{5/2}$  waves in the positive parity valence orbit, as caused by the parity inversion.
- $\Box$  The mixing of wave function lead to the formation of the halo from the predominant  $2s_{1/2}$  wave, and enhances the clustering signal in the even-parity ground state of <sup>11</sup>Be.

# Thanks!