

INTERNATIONAL SYMPOSIUM COMMEMORATING THE 40TH ANNIVERSARY OF THE HALO NUCLEI

12-18.10, 2025 @ Beijing

A subtractive renormalization scheme on Chiral EFT and Halo EFT

Xiu-Lei Ren (任修磊)

In collaboration with:

Evgeny Epelbaum & Jambul Gegelia

OUTLINE

Introduction

■ Theoretical framework

■ Results and discussion

Summary

Nuclear force — Weinberg's seminal work

Nuclear forces from chiral lagrangians

Steven Weinberg ¹

Theory Group, Department of Physics, University of Texas, Austin, TX 78712, USA

Received 14 August 1990

PLB251(1990)288-292

EFFECTIVE CHIRAL LAGRANGIANS FOR NUCLEON-PION INTERACTIONS AND NUCLEAR FORCES

Steven WEINBERG*

Theory Group, Department of Physics, University of Texas, Austin, TX 78712, USA

Received 2 April 1991

NPB363(1991)3-18

Self-consistently include many-body forces

$$V = V_{2N} + V_{3N} + V_{4N} + \cdots$$

Systematically improve order by order (heavy baryon ChEFT)

$$V_{iN} = V_{iN}^{\text{LO}} + V_{iN}^{\text{NLO}} + V_{iN}^{\text{NNLO}} + \cdots$$

Scattering amplitude: Schrödinger / Lippmann-Schwinger Eq.

$$\left[\left(\sum_{i=1}^{A} - \frac{\nabla_i^2}{2m_N}\right) + V_{2N} + V_{3N} + V_{4N} + \dots\right] |\Psi\rangle = E |\Psi\rangle$$

Provide <u>a systematic and solid theoretical approach</u> to study the few-nucleon scattering

Renormalization issue of chiral force

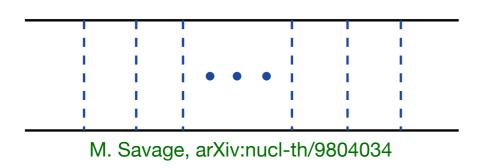
- Renormalizability: important feature of an EFT
 - Iteration of the chiral NN potential within LSE

$$T(\mathbf{p}', \mathbf{p}) = V(\mathbf{p}', \mathbf{p}) + \int \frac{d^3k}{(2\pi)^3} V(\mathbf{p}', \mathbf{k}) \frac{m_N}{\mathbf{p}^2 - \mathbf{k}^2 + i\epsilon} T(\mathbf{k}, \mathbf{p})$$

- UV divergencies cannot be absorbed by contact terms!
- Leading order NN potential

$$V_{\text{LO}} = C_S + C_T \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 - \frac{g_A^2}{4f_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \, \boldsymbol{\sigma}_2 \cdot \boldsymbol{q}}{\boldsymbol{q}^2 + m_\pi^2}$$

Iterated one-pion exchange potential (ladder diagrams)



$$\frac{k \to \infty}{\text{Spin-triplet}}$$

Logarithmic Divergence

$$\sim (Qm_N)^n$$

cannot be absorbed by C_S, C_T

Weinberg's proposal is inconsistent with renormalization, even at LO!

- Possible solutions
 - Weinberg power counting
 - ✓ Chiral potential $V = V_{LO} + V_{NLO} + \dots$ iterated in LSE
 - ✓ Keep finite cutoff lower than hard scale: $\Lambda \leq \Lambda_{\chi PT} \sim 1 \text{ GeV}$

$$T\left(\boldsymbol{p}',\boldsymbol{p}\right) = V\left(\boldsymbol{p}',\boldsymbol{p}\right) + \int_{0}^{\Lambda} \frac{d^3k}{(2\pi)^3} V\left(\boldsymbol{p}',\boldsymbol{k}\right) \frac{m_N}{\boldsymbol{p}^2 - \boldsymbol{k}^2 + i\epsilon} T(\boldsymbol{k},\boldsymbol{p})$$

- ✓ WPC is consistent G.P. Lepage, nucl-th/9706029; E.Epelbaum, J.Gegelia, Ulf-G. Meißner, NPB925(2017)161
 - Renormalization achieved only at infinite chiral order
 - Towards a formal proof

 A.M. Gasparyan, E. Epelbaum PRC105(2022)024001; 107 (2023) 044002

Possible solutions

Weinberg power counting

	2NF	3NF	4NF		
LO (Q ⁰)	S. Weinberg, PLB 1990, NPB1990			1990	LO
NLO (Q ²)	U. van Kolck et al, PLB1992, PRL1994 N. Kaiser et al., NPA1997				
N ² LO (Q ³)	U. van Kolck et al., PRC1994 E. Epelbaum et al., NPA1998, 2000	U. van Kolck et al., PRC1994			
N³LO (Q⁴)	R. Machleidt et al., PRC2003 E. Epelbaum et al., NPA2005	S. Ishikwas et al., PRC2007 V. Bernard et al., PRC2007	E. Epelbaum, PLB2006, EPJA2007	2003 2007	N ³ LO: 2N N ³ LO: 3N
N ⁴ LO (Q ⁵)	R. Machleidt et al., PRC2015 E. Epelbaum et al., PRL2015	H. Krebs et al, PRC2012,2013	Not yet	2015 In future	N ⁴ LO: 2N
E. Epelbau	gue, U. van Kolck, Ann. Rev. Nucl m, HW. Hammer, Ulf-G. Meißne dt, D. R. Entem, Phys. Rept. 503	er, Rev. Mod. Phys. 81	39		& 4N N ⁵ LO: 2N

Possible solutions

Weinberg power counting

- ✓ Chiral potential $V = V_{LO} + V_{NLO} + \dots$ iterated in LSE
- ✓ Keep finite cutoff lower than hard scale: $\Lambda \leq \Lambda_{\chi PT} \sim 1 \, \mathrm{GeV}$

$$T\left(\boldsymbol{p}',\boldsymbol{p}\right) = V\left(\boldsymbol{p}',\boldsymbol{p}\right) + \int_{0}^{\Lambda} \frac{d^3k}{(2\pi)^3} V\left(\boldsymbol{p}',\boldsymbol{k}\right) \frac{m_N}{\boldsymbol{p}^2 - \boldsymbol{k}^2 + i\epsilon} T(\boldsymbol{k},\boldsymbol{p})$$

- ✓ WPC is consistent G.P. Lepage, nucl-th/9706029; E.Epelbaum, J.Gegelia, Ulf-G. Meißner, NPB925(2017)161
 - Renormalization achieved only at infinite chiral order
 - ► Towards a formal proof A.M. Gasparyan, E. Epelbaum PRC105(2022)024001; 107 (2023) 044002
- √ High precision chiral nuclear force

	Phenomenological forces			Non-Rel. Chiral nuclear force				
	Reid93	AV18	CD- Bonn	LO	NLO	NNLO	N ³ LO	N ⁴ LO ⁺
No. of para.	50	40	38	2+2	9+2	9+2	24+2 (3 redundant)	in F-waves 24+3+4 (3 redundant)
χ^2 /datum	1.03	1.04	1.02	94	36.7	5.28 D. Ente	1.27 em, et al., PRC9	1.10 06(2017)024004
np 0-300 MeV				75	14	4.2 P. F.	2.01 Reinert, et al., E	1.06 PJA54(2018)86

Idaho

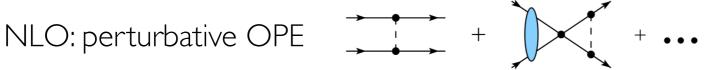
Bochum/Juelich

np

- Possible solutions
 - Weinberg power counting
 - Kaplan, Savage, and Wise (KSW) power counting
 - ✓ Treat the exchange of pions perturbatively

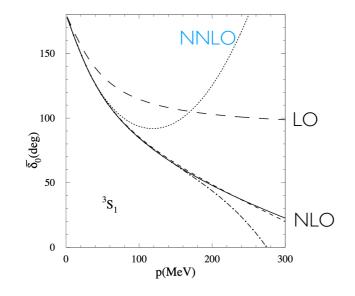
D.B. Kaplan, M.J. Savage, M.B. Wise, PLB424(1998)390

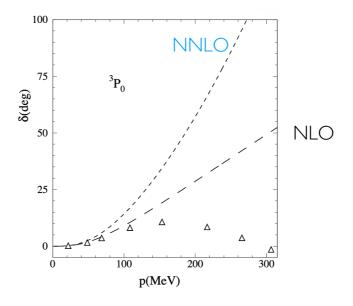
LO: only contacts



✓ Fail to converge in certain spin-triplet channels S. Fleming, et al., Nucl. Phys. A677 (2000) 313

D.B. Kaplan, PRC102(2020)034004





✓ Perturbative pion scheme with re-organized contacts

Bingwei Long et al. CD2024, in progress

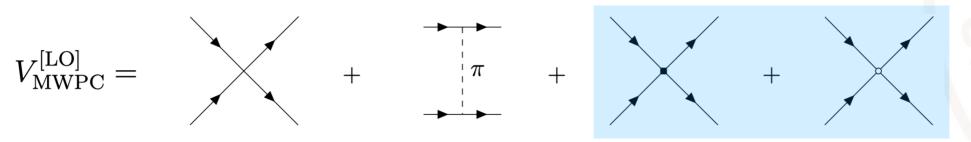
- Possible solutions
 - Weinberg power counting
 - Kaplan, Savage, and Wise (KSW) power counting
 - Modified Weinberg power counting
 - ✓ Promote the higher order contact terms to the lower chiral order

A. Nogga, et al., PRC72(2005)054006 M. C. Birse, PRC74(2006)014003 M. Pavon Valderrama, PRC72(2005) 054002.

B. Long and C.-J. Yang, PRC84(2011)057001 ...

H. W. Hammer, S. König, U. van Kolck, Rev. Mod. Phys. 92(2), 025004 (2020)

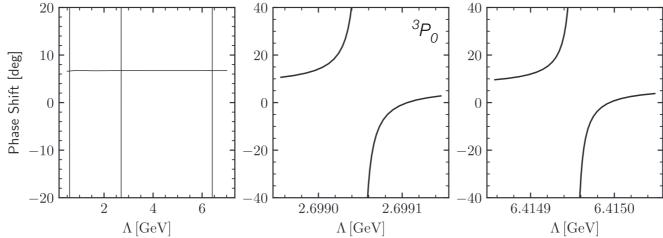
✓ Renormalization achieved at every chiral order with $\Lambda \gg \Lambda_{\gamma PT}$



Higher order contacts

cannot be fulfilled due to exceptional cutoffs

A. Gasparyan, E.Epelbaum, PRC107, 034001 (2023)



Elab=130 MeV

- Possible solutions
 - Weinberg power counting
 - Kaplan, Savage, and Wise (KSW) power counting
 - Modified Weinberg power counting

Still under debate !!!

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

Few-Body Syst (2022) 63:67

The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, ...

We tentatively propose a subtractive renormalization scheme for short range interaction in ChEFT and also extend to deal with Pwave halo state

Eur. Phys. J. A (2020) 56:152 Few-Body Syst. (2021) 62:51

Theoretical framework

Renormalization of EFTs

- □ Effective field theories (EFTs) contain all possible operators compatible with underlying symmetries
 - Effective Lagrangian with bare couplings

$$\mathcal{L} = K(\psi) + \sum_{i=1}^{\infty} g_i O_i(\psi)$$
 K: the kinetic part Oi: interaction terms

s. Weinberg

K.Wilson

- Physical quantities in terms of bare couplings are always UV divergent!
- Renormalization: introducing counter terms
 - ✓ Lagrangian with renormalized couplings and counter terms

$$\mathcal{L} = K(\psi) + \sum_{i=1}^{\infty} \left[g_i^R(\mu) + \sum_{j=1}^{\infty} \delta g_i^j \left(g_1^R(\mu), g_2^R(\mu), \dots, g_N^R(\mu), \mu_1, \dots, \mu_N, \Lambda \right) \right] O_i(\psi)$$
 renormalization scales $\mu : \{\mu_1, \mu_2, \cdots, \mu_N\}$ dependent on the regularization scheme

Renormalization of EFTs

- □ Effective field theories (EFTs) contain all possible operators compatible with underlying symmetries
 - Effective Lagrangian with bare couplings

$$\mathcal{L} = K(\psi) + \sum_{i=1}^{\infty} g_i O_i(\psi)$$
 K: the kinetic part Oi: interaction terms

s. Weinberg

- Physical quantities in terms of bare couplings are always UV divergent!
- Renormalization: introducing counter terms
 - ✓ Lagrangian with renormalized couplings and counter terms

$$\mathcal{L} = K(\psi) + \sum_{i=1}^{\infty} \left[g_i^R(\mu) + \sum_{j=1}^{\infty} \delta g_i^j \left(g_1^R(\mu), g_2^R(\mu), \dots, g_N^R(\mu), \mu_1, \dots, \mu_N, \Lambda \right) \right] O_i(\psi)$$
 renormalization scales $\mu : \{\mu_1, \mu_2, \cdots, \mu_N\}$ dependent on the regularization scheme

Works very well & clear in the perturbative EFT calculations

√ e.g. nucleon mass in ChPT

Finite # counter terms

- <u>Difficulties with Few-Nucleon System in chiral EFT</u>
 - √ Sum up an infinite number of diagrams via LSE

→ Infinite # counter terms in Lag.

BPHZ-inspired subtractive renormalization

- Bogoliubov, Parasiuk, Hepp, Zimmermann renormalization
 - A subtraction scheme: renormalizes the Feynman diagrams by subtracting <u>sub-divergences</u> and <u>overall divergences</u> and treats all coupling constants as renormalized finite parameters
 ✓ via Zimmermann's forest formula
 - These subtractions correspond to the counter

terms in Lagrangian

N. Bogoliubov and O. Parasiuk, Acta Math. 97 (1957) 227–266 K. Hepp, Comm. Math. Phys. 2, 301 (1966) W. Zimmerman, Comm. Math. Phys. 15, 208 (1969)

BPHZ-inspired subtractive renormalization

- Bogoliubov, Parasiuk, Hepp, Zimmermann renormalization
 - A subtraction scheme: renormalizes the Feynman diagrams by subtracting <u>sub-divergences</u> and <u>overall divergences</u> and treats all coupling constants as renormalized finite parameters
 ✓ via Zimmermann's forest formula
 - These subtractions correspond to the counter

terms in Lagrangian

N. Bogoliubov and O. Parasiuk, Acta Math. 97 (1957) 227–266
K. Hepp, Comm. Math. Phys. 2, 301 (1966)
W. Zimmerman, Comm. Math. Phys. 15, 208 (1969)

Inspired by BPHZ method, we tentatively propose a subtraction method to deal with the iteration part for singular potential

$$T_S = V_S + \hbar V_S G T_S$$

Expand Green function:

$$E = -E_{\mu}$$

$$G_e = \sum_{n=0}^{N} \frac{1}{n!} (E + E_{\mu})^n \frac{d^n G(E)}{(dE)^n} \Big|_{E=-E_{\mu}}$$

$$T_S^r = V_S + \hbar V_S \left(G - G_e \right) T_S^r$$

BPHZ-inspired subtractive renormalization

Renormalized T-matrix:

$$T_S^r = V_S + \hbar V_S \left(G - G_e \right) T_S^r$$

Equivalently rewritten as:

$$T_S^r = \tilde{V} + \hbar \tilde{V} G T_S^r$$
$$\tilde{V} = V_S - \hbar V_S G_e \tilde{V}$$

Modified effective potential \tilde{V} :

all necessary counter terms absorbing overall and sub-divergences!

We subtract all UV divergences, and obtain a renormalizable T matrix, which allow us to take the limit $\Lambda \to \infty$

Results and discussion

Toy model for two-body scattering

"Underlying" potential of two-body scattering

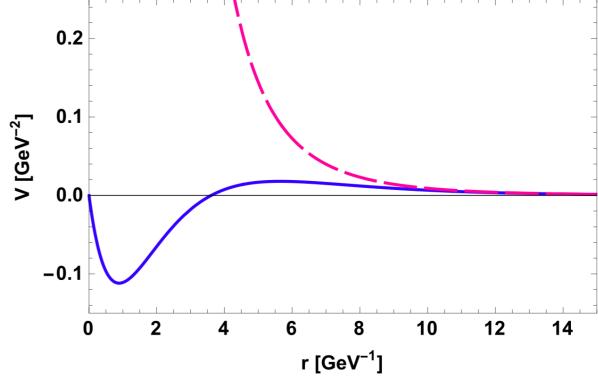
$$V(r) = \frac{\alpha \left(e^{-m_1 r} - e^{-M r}\right)}{r^3} + \frac{\alpha \left(m_1 - M\right) e^{-m_1 r}}{r^2} + \frac{\alpha \left(M - m_1\right)^2 e^{-m_2 r}}{2r} - \frac{1}{6} \alpha \left(2m_1 - 3m_2 + M\right) \left(M - m_1\right)^2 e^{-m_1 r}$$

with $\alpha = 50 \,\text{GeV}^{-2}$, $M = 0.1385 \,\text{GeV}$, $m_1 = 0.75 \,\text{GeV}$ and $m_2 = 1.15 \,\text{GeV}$

- V(r) vanishes for $r \to 0$, and behaves as $-\alpha e^{-Mr}/r^3$ for large r
- Leading order approximation in EFT

$$V_{\rm LO} = C \,\delta^3(\boldsymbol{r}) - \frac{\alpha \,e^{-M\,r}}{r^3}$$

Singular potential



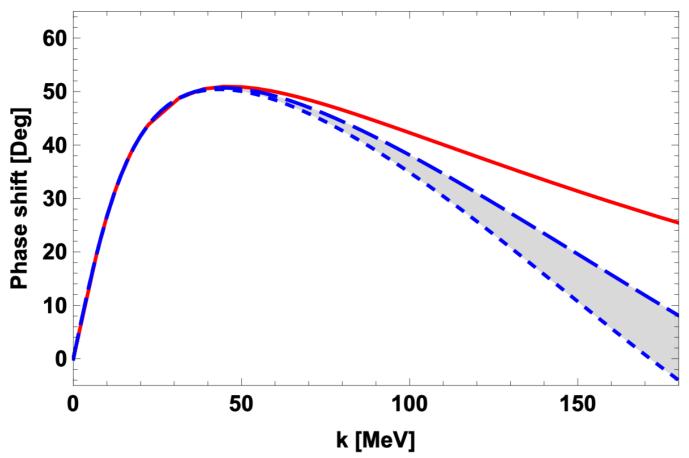
Eur. Phys. J. A (2020) 56:152

Toy model: S-wave phase shift

- S-wave T-matrix via the subtractive renormalization
 - Lippmann-Schwinger equation

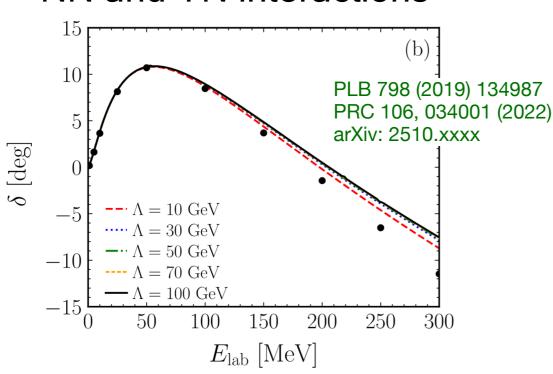
$$T_{\text{LO}}(p',p) = V_{\text{LO}}(p',p) + \int_0^\infty \frac{l^2 dl}{(2\pi)^3} V_{\text{LO}}(p,l) \left[\frac{1}{q^2 - l^2 + i\epsilon} - \frac{1}{-\mu^2 - l^2 + i\epsilon} \right] T_{\text{LO}}(l,p')$$

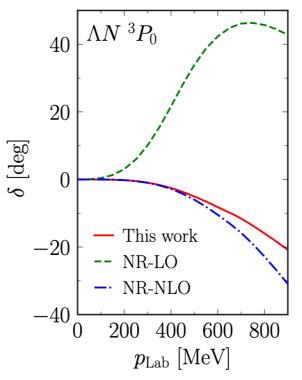
- Subtractions of loop integrals are performed at $E = -\mu^2/(1 \, {\rm GeV})$
- We fix the renormalized coupling C_R by the low-energy phase shift of underlying toy-model potential $\mu \sim 300-700~{
 m MeV}, \Lambda \rightarrow \infty$

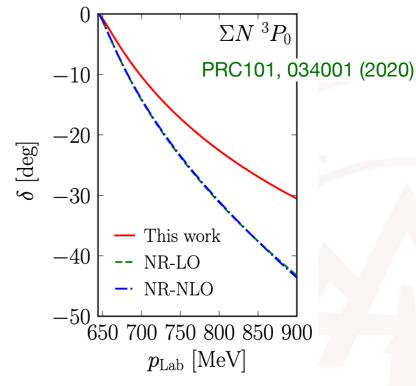


Baryon-baryon and meson-baryon scatterings

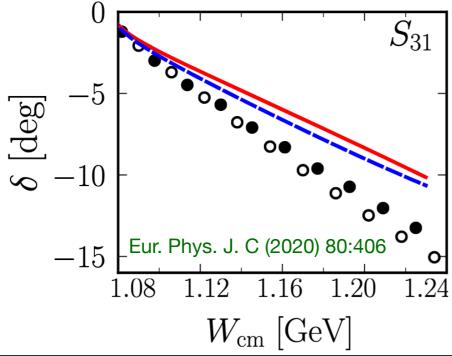
- Extend the BPHZ-inspired subtractive renormalization
 - NN and YN interactions

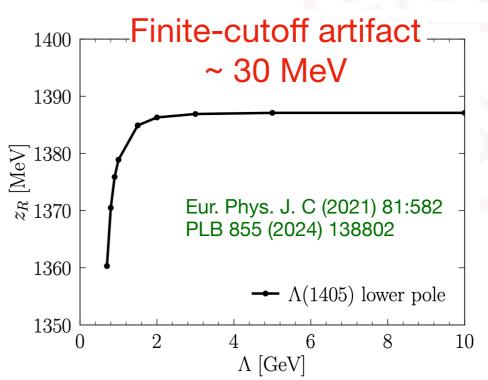






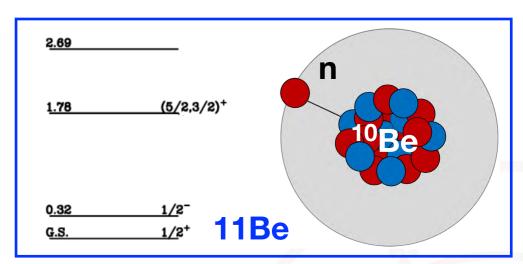
• πN and $\bar{K}N$ interactions and $\Lambda(1405)$





P-wave halo state

- One-nucleon Halo Nuclei
 - S-wave weakly bound state
 - ✓ ¹¹Be g.s. $1/2^+$: **s-wave halo** with $s_n \approx 500 \text{ keV}$
 - P-wave weakly bound state
 - ✓ ¹¹Be l.e.s. $1/2^-$: **p-wave halo** with $s_n \approx 180 \text{ keV}$



e.g. N. Talmi and I. Unna, Phys. Rev. Lett. 4, 469 (1960) K. Riisager, Rev.Mod.Phys. 66 (1994) 1105-1116 H.-W. Hammer, D.R. Phillips, NPA865 (2011) 17–42...

- Fine-tuning ERE parameters for shallow bound states
 - S-wave amplitude

$$f_0(k) = \frac{1}{-1/a_1 + \frac{1}{2}r_1k^2 - ik} \sim 0 \qquad 1/a_0 \sim M_{\rm lo}$$
 Large value

P-wave amplitude

$$f_1(k) = \frac{k^2}{-1/a_1 + \frac{1}{2}r_1k^2 - ik^3} \sim 0 \qquad \qquad \frac{1/a_1 \sim M_{\rm lo}^3}{\text{unnaturally large}}, \quad r_1 \sim M_{\rm lo}$$

P-wave halo state needs more fine-tuning

Renormalized P-wave amplitude with BPHZ

- In low-energy EFT with (only) contact terms
 - P-wave potential $V(p',p) = C_2 \, p' p + C_4 \, p' p \, \left(p'^2 + p^2 \right) + \dots$
 - Amplitude

$$T(p',p) = V(p',p) + m \int_0^{\Lambda} \frac{l^2 dl}{(2\pi)^3} \frac{V(p,l) T(l,p')}{q^2 - l^2 + i\epsilon}$$

The on-shell amplitude $T(q) \equiv T(q,q)$:

$$\frac{q^2}{T(q)} = -I(q) q^2 - I_3 + \frac{(C_4 I_5 - 1)^2}{C_4 (k^2 (2 - C_4 I_5) + C_4 I_7) + C_2}$$

where the integrals I_n and I(k) are defined via

Power-like UV Divergences!

$$I_n = -m \int_0^{\Lambda} \frac{l^2 dl}{(2\pi)^3} l^{n-3} = \left(-\frac{m\Lambda^n}{(2\pi)^3 n}, \right) \quad n = 1, 3, 5, \dots$$

$$I(q) = \int_0^{\Lambda} \frac{l^2 dl}{(2\pi)^3} \frac{m}{q^2 - l^2 + i\epsilon} = I_1 - i \frac{m \, q}{(4\pi)^2} - \frac{m \, q}{2(2\pi)^3} \ln \frac{\Lambda - q}{\Lambda + q}$$

Renormalized P-wave amplitude with BPHZ

Separate out power-like UV divergences

$$I_{n}^{S} = -m \int_{0}^{\mu_{n}} \frac{l^{2}dl}{(2\pi)^{3}} l^{n-3} - m \int_{\mu_{n}}^{\Lambda} \frac{l^{2}dl}{(2\pi)^{3}} l^{n-3} \equiv I_{n}^{R} \left(\mu_{n}\right) + \Delta_{n} \left(\mu_{n}\right)$$

$$\mu_{\text{n}}: \text{ subtraction } s$$

$$I^{S}(q) \equiv I_{1}^{R}(q, \mu_{1}) - \Delta_{1}(\mu_{1})$$

- Replacing (integrals) I_n , I(q) with $I_n^R(\mu_n)$, $I_1^R(q,\mu_1)$
- Replacing (bare) C_2 , C_4 with renormalized C_2^R , C_4^R
- Safely take the limit $\Lambda \to \infty$

Renormalized T-matrix

- Effective range expansion
 - C_2^R , C_4^R fixed by the scattering length and effective range

$$k^{3} \cot \delta = -\frac{1}{a} + \frac{1}{2}rk^{2} - \frac{k^{4}}{2\pi} \frac{3(4\mu_{1} + \pi r)^{2}}{6\pi a^{-1} - 4\mu_{3}^{3} + 3k^{2}(4\mu_{1} + \pi r)}$$

- To generate weakly bound state, we set $\mu_3 \sim M_{\rm hi}, \mu_1 \sim M_{\rm hi}$ or $M_{\rm lo}$
- In this way, we do not need to introduce a dimer field

P.F. Bedaque, H.W. Hammer, U. van Kolck, PLB 569, 159-167 (2003)

Summary

- A BPHZ-inspired subtractive renormalization method is proposed to deal with the singular potential in few-body system
 - All divergences of the amplitude can be systematically removed
 - \rightarrow The renormalizied T-matrix is obtained ($\Lambda \sim \infty$)
 - Verified by the toy-model and applied to the NN, YN interactions
 - Investigate the weakly bound P-wave halo state
 - → No need to include a dimer field to achieve the renormalization
- Next, we plan to employ the proposed subtractive renormalization method to chiral NN&YN interactions up to higher orders

Thank you for your attention!

Additional slides

Renormalization group

Let a physical quantity be given in some theory by

$$f(x)=\frac{x}{1-\hbar x},$$

where x is a parameter and \hbar controls the quantum corrections.

If |x| < 1 we can expand f(x) in Taylor series around x = 0, approximating the exact function by the sum of first N terms

$$f(x) \approx S_N = x + \hbar x^2 + \hbar^2 x^3 + \cdots + \hbar^{N-1} x^N$$
.

For |x| > 1 our expansion leads to a divergent series. In this case we can try an alternative way by rewriting the function f(x) identically and expanding in a different way:

$$f(x) = \frac{x}{1 - \hbar x} \equiv \frac{x}{1 - \hbar \mu x - \hbar x (1 - \mu)}$$

$$= \frac{1}{1 - \mu} \frac{x_{\mu}}{1 - \hbar x_{\mu}} = \frac{x_{\mu}}{1 - \mu} \left(1 + \hbar x_{\mu} + \hbar^{2} x_{\mu}^{2} + \cdots \right),$$

where $x_{\mu} = x(1 - \mu)/(1 - \hbar \mu x)$.

- Sum of any finite number of terms depends on scale μ
- Convergence properties of the series crucially depends on the choice of µ
- If x = 2, this series converges only if µ > 3/4

Slide from J. Gegelia

Renormalization group

The advantage of using RG in perturbative calculations is based on the μ -dependence of the sum of any finite number of terms.

This example demonstrates essential features of RG applied to perturbative calculations:

Exploiting the scale dependence of finite sums of the perturbative series one chooses such values of the scale parameter which leads to optimal convergence of perturbative series.

Numerous applications ... pQCD being the best known example.

Slide from J. Gegelia