International Symposium Commemorating the 40th Anniversary of the Halo Nuclei 10.12-10.18 Beijing, China

Predictions of (n, 2n) reaction cross section based on a Bayesian neural network approach

Weifeng Li (李伟峰)

Supervisor: Zhongming Niu (牛中明)

1 Introduction

2 Theoretical framework

Results and discussion

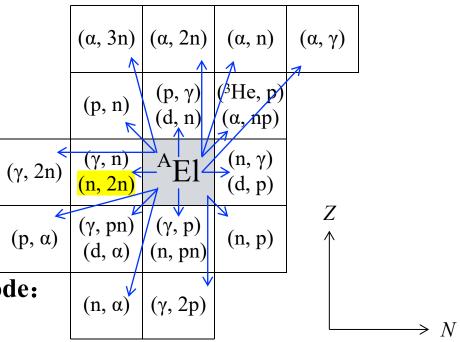
4 Summary and perspectives

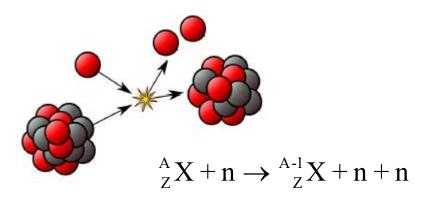
Introduction

物理与光电工程学院

School of Physics and Optoelectronic Engineering

◆ The (n, 2n) reaction is one of the most common reaction channels for neutron nuclear reactions. It is widely used in **neutron sources**, **neutron scattering** experiments, and **neutron irradiation** studies.


Luo2022EPJA, Kolos2022PRR


Major Nuclear Libraries:

- 1) ENDF/B-VIII.1 (USA, 2024)
- 2) JEFF-3.3 (Europe, 2017)
- 3) JENDL-5 (Japan, 2021)
- 4) CENDL-3.2 (China, 2020)
- 5) BROND-3.1 (Russia, 2016)

Theory-based computer code:

- 1) Talys (Netherlands)
- 2) Empire (USA)
- 3) CCONE (Japan)
- 4) UNF series (China)
- 5)

Introduction

物 THE SCH

物理与光电工程学院

School of Physics and Optoelectronic Engineering

Machine learning in nuclear decays and reactions

 $\triangle \alpha$ -decay half-lives Saxena2021JPG, Ma2021CPC

 $\triangle \beta$ -decay half-lives Niu2019PRC, Li2024JPG

▲Fission yields Wang2019PRL, Qiao2021PRC

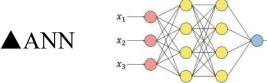
▲ Cross-sections in proton induced spallation reactions Ma2020CPC

▲ Neutron-nucleus scattering data Liang2021Thesis

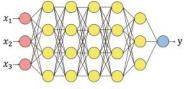
▲Fusion reaction cross-sections Akkoyun2020NIMB

A

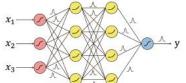
Machine learning in nuclear structure

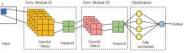

▲Masses Niu2018PLB, Niu2022PRC, Wu2022PLB

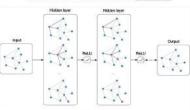
▲ Nuclear spins and parities Gernoth1993PLB, Clark2006IJMPB


▲ charge radii Wu2020PRC, Ma2020PRC, Dong2023PLB

▲ excited states Bai2021PLB, Wang2021PRC, Wang2022PLB


A · · · · · ·


▲DNN


▲BNN

▲CNN

▲GNN

▲RBF

A

The Figure are taken from He2023SCPMA.

Theoretical framework

Theoretical framework

物理与光电工程学院

School of Physics and Optoelectronic Engineering

inputs layer(<i>I</i> =nI)	hidden layer(<i>H</i> =nH)	out layer

•	weights (d_{ji})		weights (b_j)	output (y)
	bias (c_j)	•	bias (a)	

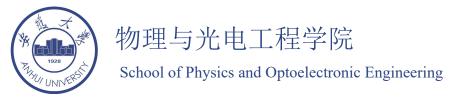
$$y(\mathbf{x}, \boldsymbol{\omega}) = a + \sum_{j}^{H} b_{j} \tanh \left(c_{j} + \sum_{i=1}^{I} d_{ji} x_{i} \right)$$

Networks	Input variables	H	Function	Output
BNN-I3	Z , N , ΔE	210	Tanh	σ
BNN-I4δ	Z , N , ΔE , δ	175	Tanh	σ
BNN-I4σ	Z , N , ΔE , $\sigma_{ m th}$	175	Tanh	σ
BNN-I5	Z , N , ΔE , δ , $\sigma_{\rm th}$	150	Tanh	σ

Z: Proton number;

N: Neutron number;

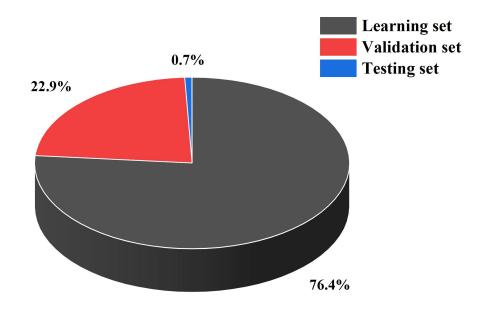
 ΔE : Incident energy – Reaction threshold;


 δ : 1, 0, -1 for even-even nuclei, odd-A nuclei, and odd-odd nuclei, respectively;

 σ_{th} : Theoretical value of the reaction cross-section.

taken from TENDL-2021

Theoretical framework


★ Total set: Z = 8 - 100 nuclei region in the energy range from threshold to the region for which data are available or up to 20 MeV. (519 nuclei, 11349 cross-section data)

All data taken from ENDF/B-VIII.0

★Testing set: 85 cross-section data of ¹¹⁵Ag, ¹³⁹Ba, ¹⁷⁸Hf and ²⁴⁸Cm;

★Learning set: No more than 20 cross-section data were randomly selected for each nucleus. (8666 cross-section data)

★ Validation set: The remaining 2598 cross-section data.

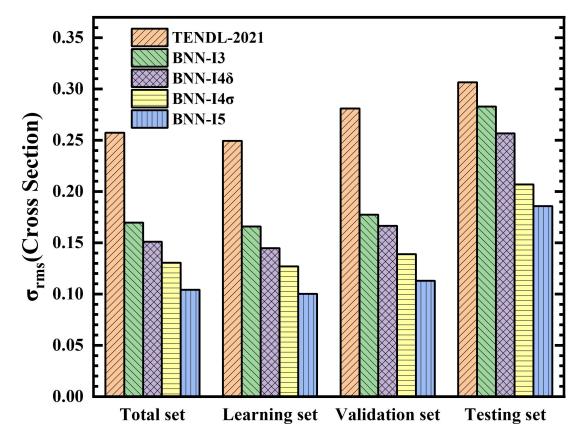
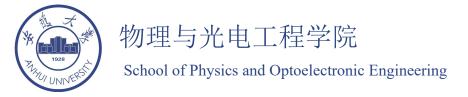



Fig. 1 The rms deviations $\sigma_{\rm rms}$ (Cross Section) of different BNN predictions with respect to the evaluation data of (n, 2n) reaction cross sections for the total set, learning set, validation set, and testing set.

- ◆ BNN method describes the (n, 2n) reaction cross section with significantly higher accuracy than the traditional TALYS approach.
- ◆ Adding relevant physical quantities to the input of the neural network can improve the prediction accuracy of the network to some extent.

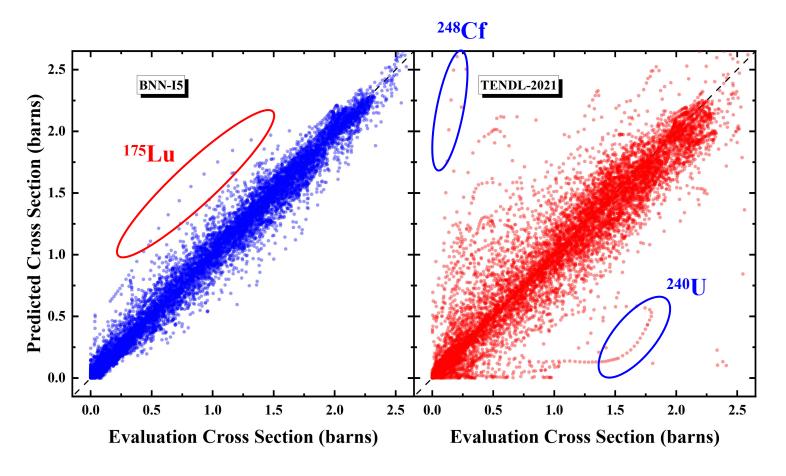


Fig.2 Scatter distribution of the (n, 2n) reaction cross sections predicted by BNN-I5 approach and TENDL-2021 as a function of the evaluation data.

◆ The BNN-I5 predictions are in general agreement with the evaluation data for the (n, 2n) cross section and provide better correlation and stability than TENDL-2021.

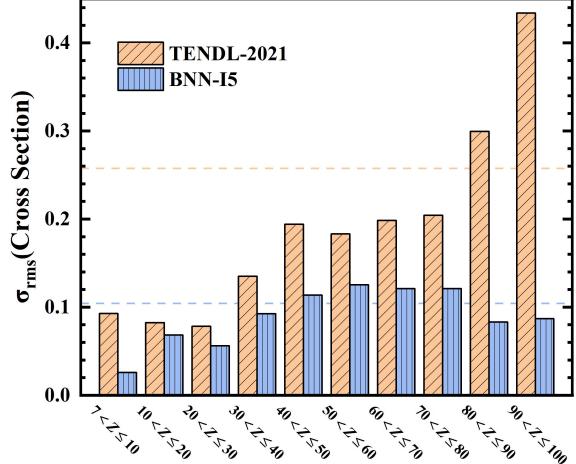
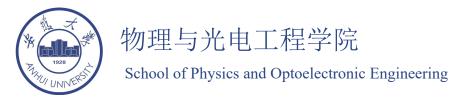



Fig. 3 The rms deviations σ_{rms} (Cross Section) of cross section predictions by BNN-I5 and TENDL-2021 with respect to the evaluation data in different nuclear regions.

- ◆ The description of the (n, 2n) reaction cross section by TENDL-2021 gets progressively worse with increasing protron number.
- ♦ The ability of the neural network to predict the (n, 2n) reaction cross section for $30 < Z \le 80$ nuclei is relatively weak, but it is still a large improvement compared to the results of TENDL-2021.

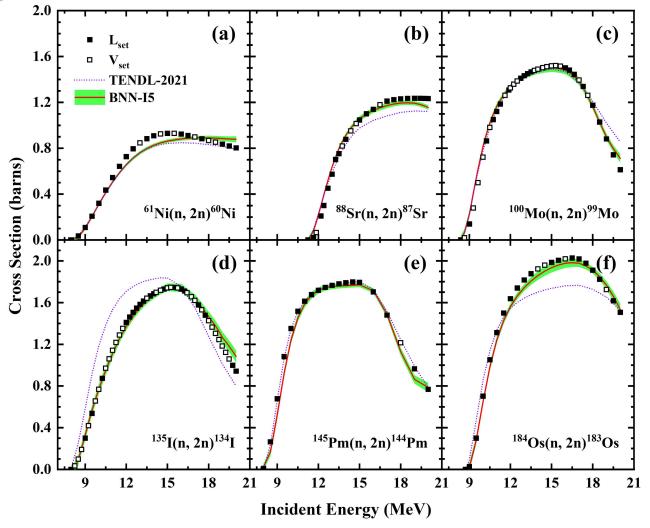
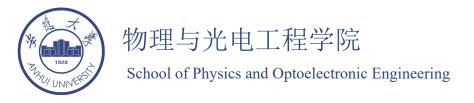



Fig. 4 The (n, 2n) reaction cross sections predicted by the BNN-I5 approach for ⁶¹Ni, ⁸⁸Sr, ¹⁰⁰Mo, ¹³⁵I, ¹⁴⁵Pm, and ¹⁸⁴Os.

- ◆ The BNN-I5 approach has a better ability to describe the (n, 2n) reaction excitation function than TENDL-2021.
- ◆ The BNN-I5 approach reproduces the (n, 2n) reaction cross section well for both the learning and validation sets.

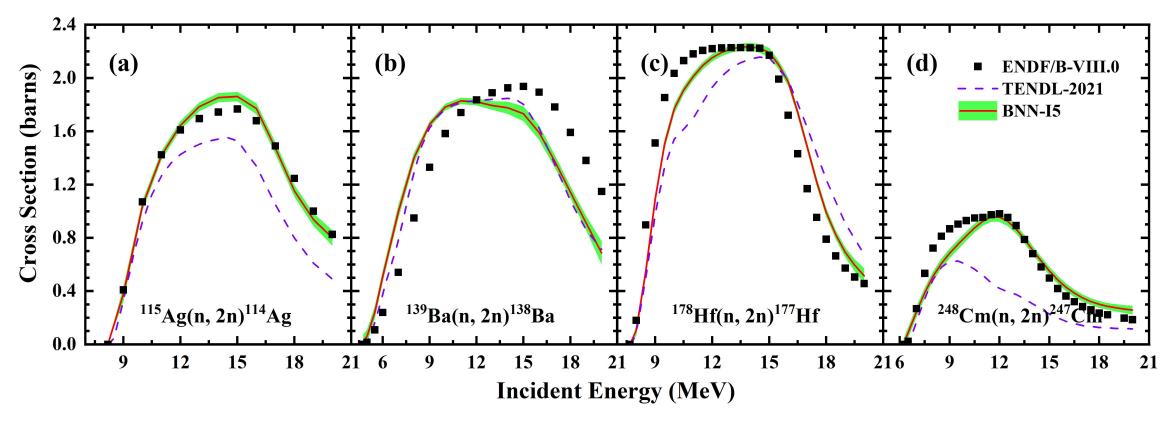


Fig. 5 Same as Fig. 4 but for ¹¹⁵Ag, ¹³⁹Ba, ¹⁷⁸Hf and ²⁴⁸Cm.

◆ The predictive ability of the BNN-I5 approach is also better than that of TENDL-2021 in the **testing set**.

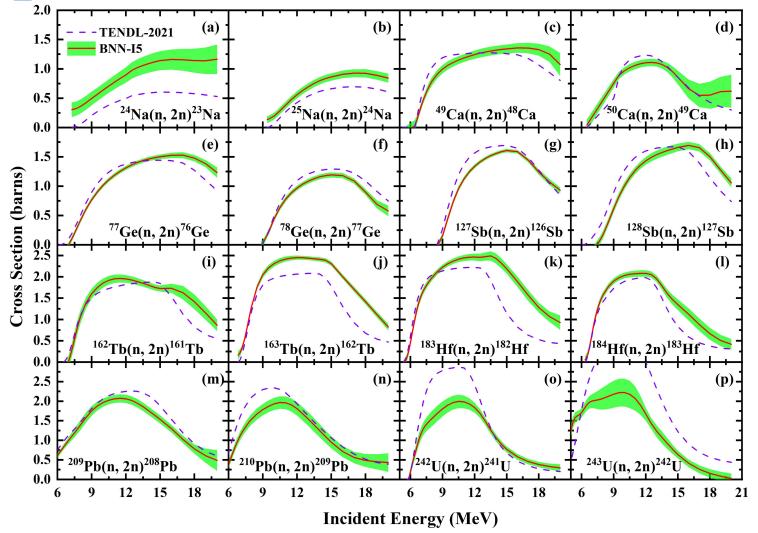
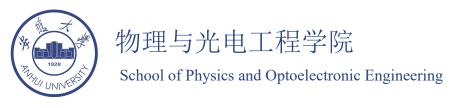
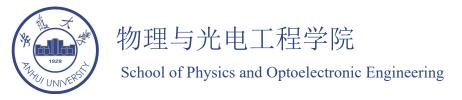




Fig.6 Comparison of the (n, 2n) reaction cross sections from BNN-I5 predictions and TENDL-2021 for various nuclei.

- ◆ The BNN-I5 approach can well reflect the variation trend of these unknown nuclei (n, 2n) reaction cross section with the incident energy.
- ◆ The BNN-I5 approach has good extrapolation ability.

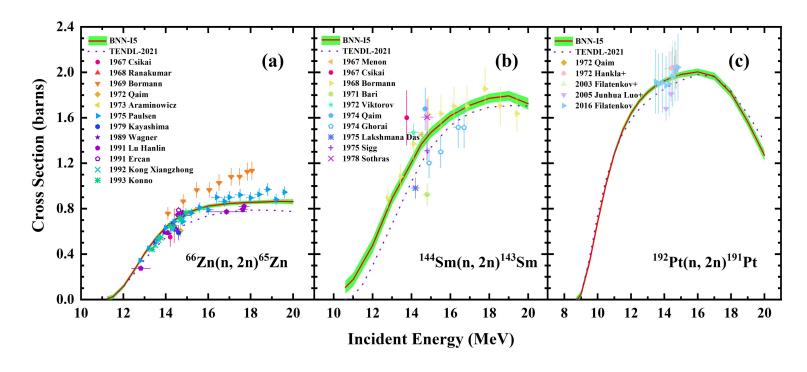
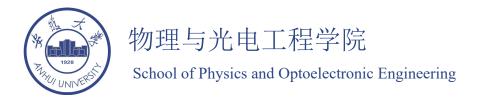
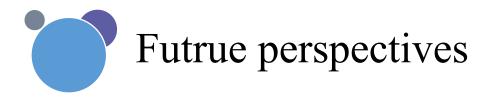


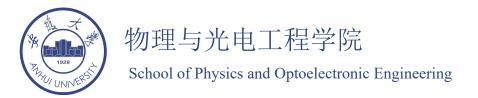
Fig. 7 Comparison of the (n, 2n) reaction cross sections from BNN-I5 predictions with the original experimental data for ⁶⁶Zn, ¹⁴⁴Sm, and ¹⁹²Pt.

◆ The experimental data from different groups can have significant deviations and may even not agree within the uncertainties.

◆ Near the incident energy of 14.6


MeV, the BNN-I5 results are in high agreement within the margin of experiment error.


Summary and perspectives



The nuclear (n, 2n) reaction cross section are investigated and give reasonable uncertainty evaluations with the BNN approach.

- \bigstar Five physical quantities, including Z, N, ΔE , δ , and σ_{th} , were identified as the best neural network inputs to describe the (n, 2n) reaction excitation function.
- ★The BNN-I5 approach reproduces the (n, 2n) reaction cross section well for both the learning, validation and testing sets.
- ★When extrapolated to the unknown region, the BNN approach can still well describe the **trend of first increasing and then decreasing** for the (n, 2n) reaction excitation functions with the incident neutron energy predicted by TENDL-2021.

In the future, the approach will be extended to more reaction channels and more nuclear regions to provide more data for nuclear reaction studies.

Thank You!

