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Introduction

Introduction

The well-known form of Woods-Saxon potential is given by:

V (r) = − V0

1 + exp
(

r−R
a

) , (1)

where V0 is the potential depth, R = r0A
1/3 is the nuclear radius (A is the mass

number, r0 ≈ 1.27 fm ), the a is the surface diffuseness parameter (typically 0.5 − 0.7
fm).

In a 2015 paper authored by Çapak et al, a more general form of the Woods-Saxon
potential was introduced and applied within the Bohr Hamiltonian framework

V (r) = −V ′
0

1 + exp(a′(r − r′)) (2)

In this expression, the parameters V ′
0 , a′, and r′ are adjustable.
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Introduction

WS bases

Assuming the total wave function takes the form Ψ(r) = g(r)Ylm(θ, ϕ), where the
spherical harmonics are denoted by Ylm, and z-component of the angular momentum
is m. The function g(r) is obtained from the following radial Schrödinger equation

− ℏ2

2m
d2u(r)
dr2 +

(
ℏ2

2m
l(l + 1)
r2 + V (r)

)
u(r) = Eu(r) (3)

where u(r) = g(r)/r, the mass of the a nucleon is m, the mean-field potential is V (r)
and finally the energy is shown by E.
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Introduction

Comparison
In the following one can compare how flexible the new WS can be versus the old WS
for a given mass number A.
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Introduction

How to solve WS differential equation

Consider the following general second-order differential equation:

−d2y(x)
dx2 + V (x)y(x) = λy(x), x ∈ [a, b], (4)

where the system’s eigenvalue is λ, and the effective potential is V (x). The domain
[a, b] is discretized into N + 2 equally spaced points with spacing h = b−a

N+1 ,
assuming Dirichlet boundary conditions like y(a) = y(b) = 0. A second-order finite
difference formula may then be used to approximate the second derivative:

d2y

dx2 ≈ yi−1 − 2yi + yi+1

h2 . (5)
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Introduction

How to solve WS differential equation
When this is substituted into the differential equation, a linear algebraic system is
produced

− 1
h2 yi−1 +

(
2
h2 + Vi

)
yi − 1

h2 yi+1 = λyi. (6)

The matrix representation of this system is in the form of

Ay = λy, (7)

where A is a symmetric tridiagonal matrix of the form:

A = 1
h2


2 + h2V1 −1 0 . . . 0

−1 2 + h2V2 −1 . . . 0

0 −1
. . . . . .

...
...

. . . . . . . . . −1
0 . . . 0 −1 2 + h2VN

 . (8)

When the matrix A is constructed, the original boundary value issue is transformed
into an eigenvalue problem.
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Machine learning
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Machine learning

Motivations

Why well-known shell and collective models should be revisited
The presence of significant approximations: Approximation is a commonly used
strategy for simplifying mathematical operations. However, in some shell model
calculations, the approximations used can result in the loss of significant amounts of
information.
The complexity of numerical computations: More sophisticated mathematical tools
with many adjustable parameters are needed. Using them makes computations more
complex.
Optimization Challenges: Adjusting parameters has always been one of the main
challenges, especially in matrix computations.
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Machine learning

Machine learning and nuclear models

To achieve more accurate predictions, we rely on more precise assumptions, avoid
crude approximations, and make use of phenomenological bases. Optimization
techniques from machine learning, such as gradient descent and Nesterov accelerated
gradient, are applied.
To evaluate the accuracy of the model, the difference between the theoretical and the
experimental values of the energies is calculated, and the root mean square of these
differences is used as a measure of error.
The model parameters are updated step by step in such a way that they move in the
direction of reducing this error. The learning rate determines how large each update
step will be.
In the accelerated gradient method, in addition to using the gradient of the error to
adjust the parameters, a “momentum” term is also included. This momentum helps
the parameter updates proceed faster and more smoothly towards reducing the error.
As an example, the learning rate may be set to 0.1, and the momentum factor to 0.9.
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Machine learning

Graphical comparison
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Machine learning

The strategy

Start: Choose initial parameter values

Step 1: Solve radial Schrödinger equation

Step 2: Construct basis functions from numerical solution

Step 3: Shell model calculation and reproducing spectra

Step 4: Compute standard deviation σ and apply ML optimization (NAG)

Convergence achieved? Stop: Self-consistent parameters found
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Shell model

Shell model
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Shell model 2p, 2n, pn nuclei

2p, 2n, pn nuclei

Hadi Sobhani (hadisobhani8637@gmail.com) Nankai University 40th Anniversary of the Halo Nuclei 16 / 62



Shell model 2p, 2n, pn nuclei

The surface delta (SDI) interaction
the matrix components linked to a particular interaction model called the simplified
surface delta interaction (SDI)

⟨a b; J T |VSDI|c d; J T ⟩ = KabcdNab(JT )Ncd(JT )[1 + (−1)la+lb+lc+ld ]ĵaĵbĵcĵd

×
{

[1 + (−1)T ]
(
ja jb J
1
2

1
2 −1

)(
jc jd J
1
2

1
2 −1

)
−(−1)la+lc+jb+jd [1 + (−1)lc+ld+J+T ]

(
ja jb J
1
2 − 1

2 0

)(
jc jd J
1
2 − 1

2 0

)}
, (9)

where Nab(JT ) =
√

1 − δab(−1)J+T /1 + δab, ĵ =
√

2j + 1 and the standard 3j
symbols are used. AT (which will come into the V0 parameter) are strength
parameters for isospins T = 0, 1, and Kabcd can be calculated as

Kabcd ≡ −V0(T ) κacκbd

16π , (10)

where κab = gnala(R)gnblb
(R)R in which gnl(r) is the basis considered in the

problem
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Shell model 2p, 2n, pn nuclei

The matrix elements
The WS base with the definition

MWS
abcd(JT ) = −

∑
J′

Ĵ′2
{

ja jb J
jc jd J′

}
⟨ad; J

′
T |V WS

SDI |cb; J
′
T ⟩V0(T )=1, (11)

we have the following relations

⟨p1 p
−1
2 ; J|V WS

SDI |p3 p
−1
4 ; J⟩ = A1 MWS

a1a2a3a4 (J1), (12)

⟨n1 n
−1
2 ; J|V WS

SDI |n3 n
−1
4 ; J⟩ = A1 MWS

a1a2a3a4 (J1), (13)

⟨p1 p
−1
2 ; J|V WS

SDI |n3 n
−1
4 ; J⟩ = 1

2

{
A1

√
[1 + (−1)J δa1a2 ][1 + (−1)J δa3a4 ]MWS

a1a2a3a4 (J1)

− A0

√
[1 − (−1)J δa1a2 ][1 − (−1)J δa3a4 ]MWS

a1a2a3a4 (J0)
}

, (14)

⟨p1 n
−1
2 ; J|V WS

SDI |p3 n
−1
4 ; J⟩ = − 1

2

∑
J′

Ĵ′2
{

jp1 jn2 J
jp3 jn4 J′

}
×
[

⟨a1 a4; J
′

T = 1|V WS
SDI |a3 a2; J

′
T = 1⟩ + ⟨a1 a4; J

′
T = 0|V WS

SDI |a3 a2; J
′

T = 0⟩
]

= 1
2

[
A1Ma1a2a3a3 (J1) + A0Ma1a2a3a3 (J0)

]
= ⟨n1 p

−1
2 ; J|V WS

SDI |n3 p
′−1
4 ; J⟩, (15)
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Shell model 2p, 2n, pn nuclei

2p, 2n, pn nuclei

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

The new WS The old WS

Nuclei V ′
0 a′ r′ A0 A1 σ A0 A1 σ

18O 50 0.38351 7.93264 — 75.0027 2.299 — (16π)38.28508 2.396
18F 51.1014 0.41904 2.62582 66.0776 44.0777 1.675 (16π)32.01591 (16π)3(−0.849643) 1.766

38Ar 185 1.21225 6.51978 — 10.0585 1.902 — (16π)21.58594 1.905
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Shell model 2p, 2n, pn nuclei

Effective charges

The effective charges concept slightly modify the fundamental definition of electric
charge

ep
eff = (1 + χ)e, (16)
en

eff = χe, (17)

where χ is called the polarization parameter, and it can be given physical
interpretations. One of its key features is that the closer it is to zero, the more
desirable it is, since it approaches the original definition of electric charge.
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Shell model 2p, 2n, pn nuclei

2p, 2n, pn nuclei

Table: Comparison between theoretical predictions of the old and the new WS results of B(E2)
transitions for different nuclei studied in the text with the experimental data. All B(E2) vales
are in e2fm4.

Nucleus Transition Exp. The new WS The old WS
18O 2+

1 → 0+
gs 9.303 8.737 8.884

4+
1 → 21 3.334 5.442 5.562

2+
2 → 0+

gs 3.643 3.311 1.840
2+

3 → 0+
gs 6.025 1.104 1.112

18F 3+
1 → 1+

gs 16.252 16.261 5.605
3+

2 → 1+
gs 1.933 1.392 34.898

3+
3 → 1+

gs 0.42 0.002 10.130
38Ar 2+

1 → 0+
gs 25.801 25.840 27.990

0+
2 → 2+

1 9.562 1.293 1.244
2+

2 → 0+
gs 12.977 14.578 8.459

2+
4 → 0+

gs 0.835 0.832 0.466
4+

1 → 2+
1 7.589 4.623 5.155

Hadi Sobhani (hadisobhani8637@gmail.com) Nankai University 40th Anniversary of the Halo Nuclei 21 / 62



Shell model 2p, 2n, pn nuclei

2p, 2n, pn nuclei

Table: Comparison between the value of the polarization constant and the deviation parameter
for B(E2) values.

Nucleus χ(The new WS) χ(The old WS) σ(The new WS) σ(The old WS)
18O 0.400757 0.042642 2.697 2.852
18F 0.03451 −0.433699 0.395 20.771

38Ar 0.575314 −0.913149 3.993 4.482
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Shell model Tamm-Dancoff approximation

Tamm-Dancoff approximation
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Shell model Tamm-Dancoff approximation

Tamm-Dancoff approximation
In Tamm-Dancoff approximation, the shell model Hamiltonian can be represented as

H = HHF + VRES, (18)

where the first term is the one-body contribution to the excitation energy

⟨ab−1|HHF|cd−1⟩ = δacδbd(εa − εb), (19)

where the single-particle energy is ε. The last part of the interaction is written using
the Pandya transformation

⟨ab−1; J |VRES|cd−1; J⟩ = −
∑
J′

Ĵ ′2
{
ja jb J
jc jd J ′

}
⟨ad; J ′|V |cb; J ′⟩. (20)

Furthermore, considering the residual interaction matrix components isospin
formalism, we derive

⟨ab−1; JT |VRES|cd−1; JT ⟩ = −
∑
J′T ′

{
ja jb J
jc jd J ′

}{ 1
2

1
2 T

1
2

1
2 T ′

}
⟨ad; J ′T ′|V |cb; J ′T ′⟩.

(21)
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Shell model Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases
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Figure: The π orbitals used in new WS basis for 16O and 40Ca.
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Shell model Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases
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Shell model Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

The new WS The old WS

Nuclei V ′
0 a′ r′

0 A0 A1 σ A0 A1 σ

16O 171.999 0.176525 10.0935 2.24362 −0.308074 1.166 −1.34154 −0.540814 1.145
40Ca 173.929 0.1991 7.9991 1.08156 0.381825 1.246 0.99404 1.0009 1.408
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Shell model Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases
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Shell model Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases

The octupole transition probability is 205.286 e2 fm6 for 16O, and 2946.240 e2 fm6

for 40Ca. After reproduction of these values in different WS bases, we obtain

χThe new WS(16O) = −0.0785275, χThe old WS(16O) = −295.895, (22)

χThe new WS(40Ca) = 0.515877, χThe old WS(40Ca) = 1.13046. (23)
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

proton-neutron Tamm-Dancoff approximation in WS bases
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism I

The half-life of beta decay is calculated using

t1/2 = ln 2
Tfi

, (24)

where Tfi represents the transition probability. This is

t1/2 = κ

f0(BF +BGT ) , (25)

where Fermi and Gamow-Teller reduced probabilities have the following expressions:
κ = 6147s, f0 is an integral calculated across phase space

BF = g2
V

2Ji + 1 |MF|2, BGT = g2
A

2Ji + 1 |MGT|2, (26)

in which Ji represents the initial state’s angular momentum, gV is the vector coupling
constant, and gA is the axial-vector coupling constant, which emerges in weak
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism II

interaction processes. The constants are gV = 1 and gA = 1.25, with Fermi and
Gamow-Teller matrix elements

MF = (ξfJf ∥1∥ξiJi) = δJiJf

∑
ab

(a∥1∥b)(ξfJf∥[c†
ac̃b]0∥ξiJi), (27)

MGT = (ξfJf ∥σ∥ξiJi) =
δJiJf√

3

∑
ab

(a∥σ∥b)(ξfJf ∥[c†
ac̃b]1∥ξiJi), (28)

ξ represents all other quantum numbers in the state, with the exception of total angular
momentum J . For c−α = ca,−mα, c̃α = (−)ja+mαc−α. In terms of angular
momenta, the 1 and σ carry zero and one, respectively. The reduction theorem
simplifies the computation of the reduced matrix elements for these.
Take the log of both sides of Eq. (25) to compute the theoretical log ft. Eq. (25)
incorporates a phase-space factor to reflect the integrated leptonic phase space. This is
sometimes called the Fermi integral.
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism III

For the decay of β±, the phase-space contribution

f±
0 =

∫ E0

1
F0(±Zf , ϵ)pϵ(E0 − ϵ)2dϵ, (29)

where the endpoint energy is E0 = (Ei − Ef )/mec
2, the initial and final state

energies are Ei and Ef , the electron’s mass is shown by me, and ϵ ≈ 1 − 1
2 (αZi)2, F0

is the Fermi function, and the momentum of the emitted electron is p =
√
ϵ2 − 1.

The Fermi function has an analytic form in the Primakoff-Rosen approximation,
which is not relativistic in nature. Using the fine structure constant α = 1/137, we get

F0(Zf , ϵ) ≈ ϵ

p
F

(PR)
0 (Zf ) = 2παZf

1 − exp(−2παZf ) .
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism IV

This type of transition is characterized using the generic shape function, which
captures the intricacies of the transition process while also providing information
about the nuclear structure.

S
(∓)
Ku (Zf , ϵ) ≈ F0(±Zf , ϵ)pϵ(E0 − ϵ)2

∑
ke+kν =K+2

(ϵ2 − 1)ke−1(E0 − ϵ)2(kν −1)

(2ke − 1)!(2kν − 1)! ,

(30)

where K denotes the forbidden order, and ke and kν are integers that begin at zero.
The integration of the shape function, also known as the phase-space factor, takes the
following form in the case of prohibited decays

f
(±)
Ku =

(
3
4

)K (2K)!!
(2K + 1)!!

∫ E0

1
S

(∓)
Ku (Zf , ϵ) dϵ, (31)
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism V

where “u” represents the unique type of forbidden decay and the following relation
with the first-forbidden unique type (meaning for the initial and final states, ∆J = 2).

f
(∓)
K=1,u = 1

12f
(∓)
1,u . (32)

The matrix elements of the beta decay are obtained via

M1u = mec
2

√
4π

ζ(ξf Jf ∥[σr]2∥ξi Ji) (33)

=
∑
ab

M(1u)(ab)(ξf Jf ∥[c†
ac̃b]2∥ξi Li), (34)

where in the Condon-Shortley convention for the phase factor we have ζ = 1.
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism VI

The final piece of equipment required for this study is the ability to manage a
transition in the event of a hole case. Configuration mixing occurs when we model
each state as a linear combination of a few bases for a given angular momentum
Regarding the change from an initial to a final state via beta decay

|Ψi⟩ =
∑

k

Ak|k⟩, |Ψf ⟩ =
∑

l

Bl|l⟩, (35)

where Ai, Bi represent real constants. The transition amplitude transforms into

(Ψf ∥Oλ∥Ψi) =
∑
kl

AkBl(l∥Oλ∥k). (36)
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

The β-decay 16N →16 O in pnTDA

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

The new WS The old WS

Nuclei v0 a r0 A0 A1 σ A0 A1 σ

16O 171.999 0.176525 10.0935 2.24362 −0.308074 1.166 −1.34154 −0.540814 1.145
16Na 52.9914 0.332586 4.39587 0.935152 1.0975 0.670 0.598779 1.16397 0.754
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Shell model proton-neutron Tamm-Dancoff approximation in WS bases

The β-decay 16N →16 O in pnTDA
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Figure: Comparison between the theoretical predictions of log ft of 16N → 16O decay and
experimental data.

σ(New WS) = 1.089, σ(Old WS) = 1.232. (37)
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Shell model Random phase approximation in WS bases

Random phase approximation formalism I

The RPA equations can then be written symbolically in matrix form as(
A B

−B∗ −A∗

)(
Xω

Yω

)
= Eω

(
Xω

Yω

)
, (38)

where Eω denotes the excitation energy.
This formalism introduces two key matrices, A and B, which together form the RPA
supermatrix. The vectors X and Y collect the forward and backward amplitudes,
respectively.
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Shell model Random phase approximation in WS bases

Random phase approximation formalism II

The explicit forms of A and B are obtained through the equation-of-motion method,
yielding

Aab,cd(J) ≡ ⟨RPA|[Aab(JM), H,A†
cd(JM)]|RPA⟩

≃ ⟨HF|[Aab(JM), H,A†
cd(JM)]|HF⟩,

(39)

Bab,cd(J) ≡ −⟨RPA|[Aab(JM), H, Ã†
cd(JM)]|RPA⟩

≃ −⟨HF|[Aab(JM), H, Ã†
cd(JM)]|HF⟩.

(40)

Here, the double commutator is defined as

[A,B,C]± ≡ 1
2

([
A, [B,C]

]
± +
[
[A,B], C

]
±

)
, (41)

with the (±) signs corresponding to commutator or anticommutator operations. This
formulation highlights how the quasi-boson approximation is applied within the RPA
framework.
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Random phase approximation formalism III

In particular, the matrix A reduces to the familiar Tamm–Dancoff matrix,

Aab,cd(JT ) = δacδbd(εa − εb) −
∑
J′T ′

{
ja jb J
jc jd J ′

}{ 1
2

1
2 T

1
2

1
2 T ′

}
⟨ad; J ′T ′|V |cb; J ′T ′⟩,

(42)

where ε denotes single-particle energies, and standard 6j notation is used.
The matrix B, on the other hand, encodes the ground-state correlations and is given by

Bab,cd(JT ) = (−1)jb+jc+J+1+T
√

(1 + δac)(1 + δbd)

×
∑
J′T ′

(−1)J′+T ′
Ĵ ′2T̂ ′2

{
ja jb J
jd jc J

′

}{ 1
2

1
2 T

1
2

1
2 T ′

}
⟨ac; J ′T ′|V |bd; J ′T ′⟩. (43)
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Random phase approximation in WS bases

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

The new WS The old WS

Nuclei V ′
0 a′ r′ A0 A1 σ A0 A1 σ

16O 171.996 0.289112 5.59822 5.81171 −1.35229 1.261 −6.79284 −3.50546 1.369
40Ca 173.999 0.153103 7.99329 56.6924 5.98731 1.240 72.9826 11.9835 1.243
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Random phase approximation in WS bases
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Figure: Optimized neutron (ν) orbitals in 16O. These orbitals are used in RPA calculation.
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Random phase approximation in WS bases
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Figure: The same as 5, but for 40Ca.
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Random phase approximation in WS bases

By reproducing the octupole transition probability, the polarization parameter in 16O
is found to be

χNew WS(16O) = 0.283327, χOld WS(16O) = 371.413. (44)

Similarly, the corresponding calculations for 40Ca yield

χNew WS(40Ca) = 0.22997, χOld WS(40Ca) = 0.647105. (45)
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Collective model

AQOA Hamiltonian and Solutions I

Therefore the corresponding Hamiltonian gets the form of

H = −
∑

λ=2,3

ℏ2

2Bλ

1
β3

λ

∂

∂βλ
β3

λ

∂

∂βλ
+ ℏ2L̂2

6(B2β2
2 + 2B3β2

3) + V (β2, β3), (46)

where β2 and β3 are the quadrupole and octupole deformation. B2 and B3 are the
corresponding masses, which are associated with these distortions. L̂ is the angular
momentum operator, along the principal axes of rotation in the intrinsic reference
frame.
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Collective model

AQOA Hamiltonian and Solutions II
The solutions to the Schrödinger equation can be found in the following way

Φ±
L (β2, β3, θ) = (β2β3)−3/2Ψ±

L (β2, β3)|LM0,±⟩, (47)

where θ denotes the set of Euler angles, which are essential for comprehending and
depicting the orientation of the body-fixed coordinate system delineated by the axes
x′, y′ and z′ about the fixed laboratory coordinate system represented by the axes x, y,
and z. In this framework, the mathematical notation |LM0,±⟩ is utilized to
demonstrate the dynamics of the rotation linked to an axially symmetric nucleus,
particularly emphasizing the angular momentum projection M as it aligns with the
laboratory-fixed z axis, while concurrently preserving a projection K that is equal to 0
along the body-fixed z′ axis

|LM0,±⟩ =
√

2L+ 1
32π2 (1 ± (−1)L)DL

0,M (θ) (48)

in which D(θ) stands for Wigner functions of Euler angles. The positive parity states
having L = 0, 2, 4, . . . are indicated by the + label, while the − label refers to ones
with L = 1, 3, 5, . . . .
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AQOA Hamiltonian and Solutions III

The Schrödinger equation may be simplified considering new deformation variables

β̃2 = β2

√
B2

B
, β̃3 = β3

√
B3

B
, B = B2 +B3

2 , (49)

the polar coordinates with the aim of the new deformation variables in the range of
0 ≤ β̃ < ∞ and −π/2 ≤ ϕ ≤ π/2

β̃2 = β̃ cosϕ, β̃3 = β̃ sinϕ, β̃ =
√
β̃2

2 + β̃2
3 , (50)

the reduced energy ϵ = (2B/ℏ2)E, and the reduced potential v = (2B/ℏ2)V . Then
we have[
− ∂2

∂β̃2
− 1
β̃

∂

∂β̃
+ L(L+ 1)

3β̃2(1 + sin2 ϕ)
− 1
β̃2

∂2

∂ϕ2 + v(β̃, ϕ) + 3
β̃2 sin2 2ϕ

− ϵL

]
Ψ±

L (β̃, ϕ) = 0

(51)
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AQOA Hamiltonian and Solutions IV

As a simplification, let us assume that the potential energy v(β̃, ϕ) can be separated
into the form v(β̃, ϕ) = u(β̃) + w(ϕ̃±): a function of only, u(β̃), and a function of
ϕ̃± = ϕ± ϕ0, w(ϕ̃±). Such a hypothesis permits us to separate Eq. (51) into two
independent equations. We further assume that w(ϕ̃±) is a very steep, double-well
potential centered around ±ϕ0. Then we have[

− d2

dβ̃2
− 1
β̃

d
dβ̃

+ 1
β̃2

(
L(L+ 1)

3(1 + sin2 ϕ0)
+ 3

sin2 2ϕ0

)
+ u(β̃) − ϵβ̃(L)

]
ψL(β̃) = 0,

(52)

and [
− 1

⟨β̃2⟩
d2

d(ϕ̃±)2
+ w(ϕ̃±) − ϵϕ

]
χ(ϕ̃±) = 0 (53)

where the total wave function has been assumed as

Ψ±
L (β̃, ϕ) = Nβ̃ψL(β̃)Nϕ

(
χ(ϕ̃+) ± χ(ϕ̃−)

)
/
√

2 (54)
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Collective model

AQOA Hamiltonian and Solutions V

with the normalization factors Nβ̃ and Nϕ, ⟨β̃2⟩ is the average of β̃2 over ψL(β̃), and
ϵL = ϵβ̃(L) + ϵϕ. The ϕ value of 0 signifies the presence of a pure quadrupole
deformation, whereas ϕ = ±π/2 indicates a pure octupole deformation. The
pronounced steepness of the two oscillators ensures that ϕ remains in proximity to
±ϕ0, thereby maintaining a consistent competition between quadrupole and octupole
deformation.
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Collective model

AQOA Hamiltonian and Solutions VI

For the ϕ̃± component, it is commonly assumed that the potential is centered around
the values ±ϕ0. For instance, the equation

u(ϕ̃±) = 1
2c0(ϕ̃±)2 (55)

can be rewritten as[
− d

d(ϕ̃±)
+ 1

2c0⟨β̃2⟩(ϕ̃±)2
]
χ(ϕ̃±) = ϵϕ⟨β̃2⟩χ(ϕ̃±), (56)

This equation represents a simple harmonic oscillator with eigenvalues given by

ϵϕ =
√

2c0

⟨β̃2⟩

(
nϕ + 1

2

)
, nϕ = 0, 1, 2, . . . (57)
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AQOA Hamiltonian and Solutions VII

and eigenfunctions

χnϕ
(ϕ̃±) = Nnϕ

Hnϕ
(b0ϕ̃

±)e−b2
0(ϕ̃±)2/2, b0 =

(
c0⟨β̃2⟩

2

)1/4

, (58)

where the normalization constant is given by Nnϕ
=
√
b0/(

√
π2nϕnϕ!) and Hermite

polynomials are H.
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Collective model

AQOA Hamiltonian and Solutions VIII

Now, we turn to the part of the differential equation involving β̃. In this section, we
consider the extended sextic (ES) potential

u(β̃) = a

β̃2
+ bβ̃2 + cβ̃4 + dβ̃6, (59)

By substituting this potential and assuming the solution in the form ψ(β̃) = ξ(β̃)√
β̃

, we
obtain the following equation:

d2ξ(β̃)
dβ̃2

+
(
ε− a0

β̃2
− bβ̃2 − cβ̃4 − dβ̃6

)
ξ(β̃) = 0, (60)

a0 = a0(L, ϕ0) = a− 1
4 + L(L+ 1)

3(1 + sin2 ϕ0)
+ 3

sin2(2ϕ0)
. (61)
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AQOA Hamiltonian and Solutions IX

We need to perform several algebraic transformations to derive a solution for this
differential equation. The first step is the change of variable x = β̃2, which simplifies
the equation by lowering the powers of terms:

d2ξ(x)
dx2 + 1/2

x

dξ(x)
dx +

(
−a0

x2 − b+ ε

x
− cx− dx2

) ξ(x)
4 = 0. (62)

We obtain a form with known solutions by eliminating the first-order derivative term
in this differential equation. To remove this term, we assume the solution in the form
ξ(x) = f(x)/ 4

√
x. Substituting this into the differential equation yields:

d2f(x)
dx2 +

(
−

a0
4 − 3

16
x2 + ε/4

x
− b

4 − c

4x− d

4x
2
)
f(x) = 0. (63)

The general solutions to this differential equation are given by:

f(x) = xA exp
(
Bx+Dx2)h(x), (64)
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Collective model

AQOA Hamiltonian and Solutions X

where the parameters are:

A = 1
4
(
2 +

√
1 + 4a0

)
, (65)

B = −c
4
√
d
, (66)

D = −
√
d

4 , (67)

and the governing differential equation for h(x) is:

x
d2h(x)

dx2 + dh(x)
dx

(
1 + 1

2
√

1 + 4a0 − c

2
√
d
x−

√
dx2
)

h(x)
[

− c

4
√
d

+ ε

4 − c
√

1 + 4a0

8
√
d

+ x

(
− b

4 + c2

16d −
√
d−

√
d

4
√

1 + 4a0

)]
= 0.

(68)
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AQOA Hamiltonian and Solutions XI

This differential equation has a known solvable form using the Bethe ansatz method.
Since, in this Hamiltonian, we are usually interested in node-less solutions, by
following the details of the method introduced and utilized in for the ground state
nβ̃ = 0, we obtain:

h(x) = 1, (69)

which leads to the following eigenvalue equation and constraint:

ε =
(
2 +

√
1 + 4a0

)√
b+

√
d
(
4 +

√
1 + 4a0

)
, (70)

c = 2
√
d
(
b+

√
d
(
4 +

√
1 + 4a0

))
. (71)
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Collective model

AQOA Hamiltonian and Solutions XII

To summarize this section of the paper, we present the final form of the solution to this
part of the differential equation in the same order as adopted during the solution
derivation process

ψ(β̃) = NLβ̃
2A−1 exp

[
Bβ̃2 +Dβ̃4] , (72)

where the normalization constant, NL, is calculated using its definition

NL = 1√∫∞
0 |ψL(β̃)|2β̃ dβ̃

. (73)
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Results for sextic potential

The deviation parameter should be defined as

σ =

√
1
N∗

(
EExp.(ℓπ

i )
EExp.(2+) − ETheo.(ℓπ

i ) − ETheo.(0+)
ETheo.(2+) − ETheo.(0+)

)2
.

Isotope ℓmax σES σ∗
ES σSextic σDavidson

222Ra 20 0.573 0.587 0.604 0.917
224Ra 28 0.606 0.616 0.801 1.351
226Ra 28 0.947 0.964 1.232 1.360
224Th 18 0.621 0.638 0.691 0.843
226Th 20 0.908 0.930 1.059 0.994
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Energy levels

0+ 0.000 0.000

2+ 1.000 1.000
4+ 2.713 2.891

6+ 4.949 5.284

8+ 7.585 8.011

10+ 10.555 10.999

12+ 13.828 14.211

14+ 17.392 17.622

16+ 21.221 21.218

18+ 25.290 24.986

20+ 29.580 28.918

1− 2.179

0.353

3− 2.855
1.865

5− 4.264 4.038

7− 6.325 6.611

9− 8.927 9.475

11− 11.972
12.579

13− 15.386 15.892
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Exp. ES Exp. ES

222Ra

0+ 0.000 0.000
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16+ 25.929 26.266

18+ 30.959 31.209

20+ 36.258 36.387

22+ 41.795 41.787

24+ 47.544 47.399

26+ 53.480 53.213

28+ 59.622 59.222

1− 2.560

0.343

3− 3.441
1.927

5− 5.132 4.413

7− 7.594 7.525

9− 10.740 11.102

11− 14.468
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13− 18.651
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26+ 61.421 61.306

28+ 68.696 68.396

1− 3.747

0.339

3− 4.749

1.953

5− 6.603

4.601

7− 9.264
8.034

9− 12.677 12.072

11− 16.743 16.600

13− 21.388 21.542

15− 26.536 26.848

17− 32.126 32.482

19− 38.099 38.417

21− 44.412 44.633

23− 51.032 51.115

25− 57.931 57.848

27− 65.080 64.822

Exp. ES Exp. ES

226Ra

0+ 0.000 0.000

2+ 1.000 1.000

4+ 2.896 3.007

6+ 5.451 5.663

8+ 8.501 8.773

10+ 11.965 12.236

12+ 15.798 15.999

14+ 19.968 20.027

16+ 24.444 24.298

18+ 29.195 28.794

1− 2.559

0.347

3− 3.112
1.904

5− 4.735 4.270

7− 7.130 7.169

9− 10.170 10.465

11− 13.734 14.083

13− 17.724 17.982

15− 22.066 22.134

17− 26.709 26.518

Exp. ES Exp. ES

224Th

0+ 0.000 0.000

2+ 1.000 1.000

4+ 3.136 3.183

6+ 6.195 6.306

8+ 9.999 10.157

10+ 14.409 14.587

12+ 19.324 19.495

14+ 24.675 24.817

16+ 30.413 30.506

18+ 36.497 36.528

20+ 42.896 42.858

1− 3.191

0.338

3− 4.259

1.959

5− 6.240
4.642

7− 9.112
8.152

9− 12.785 12.307

11− 17.152 16.986

13− 22.105 22.108

15− 27.554 27.618

17− 33.418 33.477

19− 39.627 39.655

Exp. ES Exp. ES

226Th
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