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Introduction

Introduction

The well-known form of Woods-Saxon potential is given by:

R GRS
1+exp (55F)

Vr) = (1

where Vj is the potential depth, R = roA'/3 is the nuclear radius (A is the mass

number, ¢y ~ 1.27 fm ), the a is the surface diffuseness parameter (typically 0.5 — 0.7
fm).
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Introduction

Introduction

The well-known form of Woods-Saxon potential is given by:

R CRR
1+exp (=£)

V(r) = ; )

where Vj is the potential depth, R = roA'/3 is the nuclear radius (A is the mass
number, 7o ~ 1.27 fm ), the a is the surface diffuseness parameter (typically 0.5 — 0.7
fm).

In a 2015 paper authored by Capak et al, a more general form of the Woods-Saxon
potential was introduced and applied within the Bohr Hamiltonian framework

_ -
1 +exp(a(r—1"))

V(r) )

In this expression, the parameters V{j, a’, and r’ are adjustable.
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Introduction

WS bases

Assuming the total wave function takes the form U(r) = g(r) Y, (6, ¢), where the
spherical harmonics are denoted by Y},,,, and z-component of the angular momentum
is m. The function g(r) is obtained from the following radial Schrédinger equation

where u(r) = g(r)/r, the mass of the a nucleon is m, the mean-field potential is V' (r)
and finally the energy is shown by F.
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Comparison

In the following one can compare how flexible the new WS can be versus the old WS
for a given mass number A.

V(r)

=~ The old WS

The new WS (case 1)
~— The new WS (case 2)
~ The new WS (case 3)
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Introduction

How to solve WS differential equation

Consider the following general second-order differential equation:

~ dPy(z)
dx?

+ V(x)y(e) = Ay(x), € [a,b], @)

where the system’s eigenvalue is A, and the effective potential is V'(x). The domain
[a, b] is discretized into N + 2 equally spaced points with spacing h = Jl(,jr“l,
assuming Dirichlet boundary conditions like y(a) = y(b) = 0. A second-order finite

difference formula may then be used to approximate the second derivative:

A’y yio1 =2y + Yin
—2 . 5
dx? h? )
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Introduction

How to solve WS differential equation

When this is substituted into the differential equation, a linear algebraic system is
produced

1 2 1
—a¥i-1t (hg + Vz‘) Yi — gl = AYi- (6)
The matrix representation of this system is in the form of
Ay = Ay, @)
where A is a symmetric tridiagonal matrix of the form:
2+ h?V; -1 0o ... 0
-1 2+ h*V, -1 ... 0
1 . . .
A= 72 0 -1 o : . (8)
: : S -1
0 . 0 -1 2+h%Vy

When the matrix A is constructed, the original boundary value issue is transformed
into an eigenvalue problem.

Hadi Sobhani (hadisobhani8637 @gmail.com)

Nankai University 40th Anniversary of the Halo Nuclei 8/62



Machine learning
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Machine learning
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Motivations

Why well-known shell and collective models should be revisited

@ The presence of significant approximations: Approximation is a commonly used
strategy for simplifying mathematical operations. However, in some shell model
calculations, the approximations used can result in the loss of significant amounts of
information.

@ The complexity of numerical computations: More sophisticated mathematical tools
with many adjustable parameters are needed. Using them makes computations more
complex.

@ Optimization Challenges: Adjusting parameters has always been one of the main
challenges, especially in matrix computations.
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Machine learning

Machine learning and nuclear models

To achieve more accurate predictions, we rely on more precise assumptions, avoid
crude approximations, and make use of phenomenological bases. Optimization
techniques from machine learning, such as gradient descent and Nesterov accelerated
gradient, are applied.

To evaluate the accuracy of the model, the difference between the theoretical and the
experimental values of the energies is calculated, and the root mean square of these
differences is used as a measure of error.

The model parameters are updated step by step in such a way that they move in the
direction of reducing this error. The learning rate determines how large each update
step will be.

In the accelerated gradient method, in addition to using the gradient of the error to
adjust the parameters, a “momentum” term is also included. This momentum helps
the parameter updates proceed faster and more smoothly towards reducing the error.
As an example, the learning rate may be set to 0.1, and the momentum factor to 0.9.
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The strategy

{Sta.rl: Choose initial parameter values}

H Step 1: Solve radial Schrodinger equation

‘ Step 2: Construct basis functions from numerical solution

l

‘ Step 3: Shell model calculation and reproducing spectra

l

‘ Step 4: Compute standard deviation o and apply ML optimization (NAG) ‘

|

Convergence achieved?

—

Stop: Self-consistent parameters found}
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Shell m

Shell model
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Shell model 2p, 2n, pn nuclei

2p, 2n, pn nuclei
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2p, 20, pn e
The surface delta (SDI) interaction

the matrix components linked to a particular interaction model called the simplified
surface delta interaction (SDI)

A~~~ A~

(ab; JT|Vspiled; JT) = KapeaNap(JT)Nopg(JT)[1 + (—1)latlotletlalj 55054

y {[1+(_1> ]<J2a J%b _Jl> (12 Jd _J1>

()t 4 (=)t <Ja Jb g) (jc jdl ‘é)}, )
2

2

D=

where Ny (JT) = /1 — 0ap(—1)/+T/1 + Sabs ] = /27 + 1 and the standard 3
symbols are used. A (which will come into the Vj parameter) are strength
parameters for isospins 7' = 0, 1, and K 3.4 can be calculated as

Vb (T) RacKbd

Kabcd = - 167 )

(10)

where Kqp = gn, 1, (R)Gn,1, (R)R in which g,,;(r) is the basis considered in the
problem
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2p, 2n,pn nuclei
The matrix elements

The WS base with the definition

J
Mifpea(IT) = = E J {J“ 2 ,}<ad;J/T\VsV$?\cb;J’T>vO<T>=1, an

we have the following relations

—1 WS —1 WS
(p1py s J|Vsprlpspy 3 J) = At M

aragagag (J1)s (12)

(n1ny's J|Vamlng ngts J) = Ay M J1), a3

a1a2a3a4(

<p1 p;l; lesvalsln3 "Zl? J> = l{Al \/[1 + (71)]5@1(12][1 + (7 ) a3a4]Ma1a2a3a4(‘]1)
= A0y/I1 = (=1)78aya][1 = (—1)7 Sagas MY ayazay (JO) o (14)

-1 WS -1 J J J
(prny ™5 J|Vapilps ng s J) = —3 E :J, {JZ; ing J’}
J!

x [<a1 as; J' T = 1|V las ag; J' T =1) + (a1 ag; J' T = 0|Vers |az az; J’T:o)]

—1
= 3 [A1 My azagas (1) + AoMayagagas (JO)| = (n1 p3 5 JVabyIns 95 7). (15)
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2. 20, 1 e
2p, 2n, pn nuclei

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

I The new WS I The old WS
Nuclei H Vy a r ‘ Ao Ay ‘ o H Ay Ay ‘ o
180 50 0.38351  7.93264 — 75.0027 | 2.299 — (167)38.28508 2.396
I8F || 51.1014  0.41904 2.62582 | 66.0776 44.0777 | 1.675 || (167)32.01591 (167)3(—0.849643) | 1.766
38Ar 185 1.21225  6.51978 — 10.0585 | 1.902 — (167)%1.58594 1.905
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G
Effective charges

The effective charges concept slightly modify the fundamental definition of electric
charge

ely = (L+ x)e, (16)
eog = X6 17
where Y is called the polarization parameter, and it can be given physical

interpretations. One of its key features is that the closer it is to zero, the more
desirable it is, since it approaches the original definition of electric charge.
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2. 20, 1 e
2p, 2n, pn nuclei

Table: Comparison between theoretical predictions of the old and the new WS results of B(E2)
transitions for different nuclei studied in the text with the experimental data. All B(E2) vales
are in ¢*fm*.

Nucleus  Transition Exp. The new WS The old WS

180 2F - 05 9303 8737 8.884
4 —2; 3334 5.442 5.562
2§ -0 3643 3311 1.840
2§ -0 6025 1.104 1.112

18p 3F =15 16252 16.261 5.605
37 -1 1933 1.392 34.898
33 15 042 0.002 10.130

3BAr 2f — 05 25801 25.840 27.990
05 —2F 9562 1.293 1.244
2§ — 05 12977 14578 8.459
2 - 05 03835 0.832 0.466
4f —2f 7580 4.623 5.155
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2. 20, 1 e
2p, 2n, pn nuclei

Table: Comparison between the value of the polarization constant and the deviation parameter
for B(E2) values.

Nucleus | x(The new WS)  x(The old WS) | o(The new WS) o (The old WS)

180 0.400757 0.042642 2.697 2.852
18F 0.03451 —0.433699 0.395 20.771
38 Ar 0.575314 —0.913149 3.993 4.482
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Shell m

OB Tamm-Dancoff approximation

Tamm-Dancoft approximation
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OIS Tamm-Dancoff approximation

Tamm-Dancoff approximation

In Tamm-Dancoff approximation, the shell model Hamiltonian can be represented as
H = Hyr + VREs, (18)
where the first term is the one-body contribution to the excitation energy
(ab™'[Hyp|ed ™) = 8acbba(ea — €1), (19)

where the single-particle energy is €. The last part of the interaction is written using
the Pandya transformation

(ab™"; J|Vies|ed ™5 ) = ng{?a ;Z :7]’}<ad; SWVieb; ') (20)
J ¢

Furthermore, considering the residual interaction matrix components isospin
formalism, we derive

T
T/

- 1
(ab™ Y JT|Vegsled 5 JT) = =Y {Ja o J}{%
2

Jr’

B[00 =

V2 sl R 22e sl
T }<ad,JT|V|cb,JT>.

21
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RIS Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases

The new WS 7 orbtials of 'O
T T

The new WS 7 orbtials of **Ca
T T T

T T T T T
0.6 |5 i
0.4 —— groa(r) H
gros(r)
—— gr1s(T)
= =
> >

—0.4 -

797[]d<7‘) (1
— gnop(r)
—— gr1s(7)
706 Il Il Il Il I
0 2 4 6 8 10 12
T
Figure:

The 7 orbitals used in new WS basis for 1°0 and “°Ca.
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RIS Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases

The old WS 7 orbtials of '°O

The old WS 7 orbtials of **Ca
T T T T T 0.6 |- ! ! ! ! !
04 — groa(r) |
—— gros(r)
— gr1s(T)
=

—— groa(r)
—0.4 — grop(r)
h— gvrls(’!')
Il Il Il Il T | | Il Il Il
0 2 4 6 8 10 12 0 2 4 6 8 10 12
T T
Figure:

The same as 1, but for the old WS basis.
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Tamn-Dancoff approximation
Tamm-Dancoff approximation in WS bases

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

H The new WS H The old WS
Nuclei H 74 a’ g ‘ Ag Ay ‘ Ay ‘ o
160 H 171.999  0.176525 10.0935 | 2.24362 —0.308074 ‘ 1.166 H —1.34154 —0.540814 | 1.145

40Ca 173.929  0.1991 7.9991 | 1.08156  0.381825 | 1.246 0.99404 1.0009 1.408
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RIS Tamm-Dancoff approximation

Tamm-Dancoff approximation in WS bases

- o A !
ul B =]
A o
B B @
12| 4 1 |
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2 A 4 3 a
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Negative-parity spectrum of *0 Negative-parity spectrum of “Ca

Figure: Graphical comparison of theoretical predictions using the new and the old form of WS
with the experimental values.
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Tamn-Dancoff approximation
Tamm-Dancoff approximation in WS bases

The octupole transition probability is 205.286 2 fm® for 160, and 2946.240 €2 fm°
for 4°Ca. After reproduction of these values in different WS bases, we obtain

XThe new ws (1°0) = —0.0785275, Xthe old ws (1°0) = —295.895,  (22)

XThe new ws (10Ca) = 0.515877, XThe old ws (1°Ca) = 1.13046. (23)
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OISR proton-neutron Tamm-Dancoff approximation in WS bases

proton-neutron Tamm-Dancoff approximation in WS bases

Hadi Sobhani (hadisobhani8637 @gmail.com) Nankai University 40th Anniversary of the Halo Nuclei 30/62



proton-neutron Tamm-Dancoff approximation in WS bases
Beta decay formalism I

The half-life of beta decay is calculated using

In2
lij2 = 24
1/2 Tf@ ) (24)
where T'; represents the transition probability. This is
K
lyg= 77— (25
Y2 fo(Br + Bar)

where Fermi and Gamow-Teller reduced probabilities have the following expressions:
Kk = 6147s, fy is an integral calculated across phase space

| ME|?, Bgr =

B = |Mar|?, (26)

2J+1 2J+1

in which J; represents the initial state’s angular momentum, gy is the vector coupling
constant, and g4 is the axial-vector coupling constant, which emerges in weak
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OISR proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism II

interaction processes. The constants are gy = 1 and gy = 1.25, with Fermi and
Gamow-Teller matrix elements

M = (T |&T) = 6.0, Y (allL[)(Er T Fll[ehElol|& i), 27
ab
)

Mar = (§rJsllol&idi) = f/éf > (allalb) & Tyl dhlléT),  @28)
ab

¢ represents all other quantum numbers in the state, with the exception of total angular
momentum J. For c_o = ¢4,—ma, Ca = (—)Jatmac_,,. In terms of angular
momenta, the 1 and o carry zero and one, respectively. The reduction theorem
simplifies the computation of the reduced matrix elements for these.

Take the log of both sides of Eq. (25) to compute the theoretical log ft. Eq. (25)
incorporates a phase-space factor to reflect the integrated leptonic phase space. This is
sometimes called the Fermi integral.
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OISR proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism III

For the decay of 3%, the phase-space contribution

Ey
&= Fo(+Z;, €)pe(Eo — €)2de, (29)
1

where the endpoint energy is Ey = (E; — Ef)/m.c?, the initial and final state
energies are I; and F, the electron’s mass is shown by me, and e =~ 1 — %(aZi)Q, Fy

is the Fermi function, and the momentum of the emitted electron is p = v/€2 — 1.
The Fermi function has an analytic form in the Primakoff-Rosen approximation,
which is not relativistic in nature. Using the fine structure constant o« = 1/137, we get

2raZy
1 —exp(—2raZys)

€ PR
Fo(Zg,€) ~ ];Fé \(2y) =
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OISR proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism IV

This type of transition is characterized using the generic shape function, which

captures the intricacies of the transition process while also providing information
about the nuclear structure.

) _ 2 (62 _ 1)I~ce—1(EO _ 6)2(}1:1,—1)
Sia (Zy,€) m Fo(£Zs, €)pe(Eo — €)* > Ok DIk, DT

(30)

ket+k, =K+2

where K denotes the forbidden order, and k. and k,, are integers that begin at zero.

The integration of the shape function, also known as the phase-space factor, takes the
following form in the case of prohibited decays

(+) 3\ "
Ku:<4> 2K+1”/ ST (Z;,€) de, 31
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OISR proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism V

[TERT)

where “u” represents the unique type of forbidden decay and the following relation
with the first-forbidden unique type (meaning for the initial and final states, AJ = 2).

1
K= T (32)

The matrix elements of the beta decay are obtained via

Muw = "< c(e; Tyl lomlalles T) 33)
lu — \/E FIrINOT|2(|Gi Ji
=Y MM (ab)(&s Trl[chdlallé La), (34)
ab

where in the Condon-Shortley convention for the phase factor we have ( = 1.
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OISR proton-neutron Tamm-Dancoff approximation in WS bases

Beta decay formalism VI

The final piece of equipment required for this study is the ability to manage a
transition in the event of a hole case. Configuration mixing occurs when we model
each state as a linear combination of a few bases for a given angular momentum
Regarding the change from an initial to a final state via beta decay

Wi) = > Axlk), [¥g) = Bill), (35)
k 1
where A;, B; represent real constants. The transition amplitude transforms into

(TslOAT:) =Y ApBi(1]| OAl|F). (36)
kl
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proton-neutron Tamm-Dancoff approximation in WS bases
The 3-decay 1N —1¢ O in pnTDA

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

I The new WS H The old WS
Nuclei H Vg a ro ‘ Ay Ay Ay ‘ o
160 171.999 0.176525 10.0935 | 2.24362 70.308074 1. 166 —1.34154  —0.540814 | 1.145
Na || 52.9914 0.332586 4.39587 | 0.935152 1.0975 0.670 || 0.598779 1.16397 0.754
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proton-neutron Tamm-Dancoff approximation in WS bases
The 3-decay 1N —1¢ O in pnTDA

%61\19 2 %6N9 2 %61\19 2
622 1 4129 1-
é‘: 435 27 g g 4100 2~
i& 5111 é Tl 409 17
| 4482 3~ 2 | 5941 3~
2 9.071 % 1 E 2 8.973 %
L0, U 160, U 150, L8973 07 160,

Figure: Comparison between the theoretical predictions of log ft of N — 160 decay and
experimental data.

o(New WS) = 1.089,  o(Old WS) = 1.232. (37)
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LSRR  Random phase approximation in WS bases

Random phase approximation in WS bases
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LSRR  Random phase approximation in WS bases

Random phase approximation formalism I

The RPA equations can then be written symbolically in matrix form as

A B X X
(3 96 e

where E,, denotes the excitation energy.
This formalism introduces two key matrices, A and B, which together form the RPA

supermatrix. The vectors X and Y collect the forward and backward amplitudes,
respectively.
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SLIBGEE  Random phase approximation in WS bases

Random phase approximation formalism II

The explicit forms of A and B are obtained through the equation-of-motion method,
yielding

Aas.ca(-J) = (RPA|[Au(JM), H, Al (JM)||RPA)

(39)
~ (HF|[Aq(J M), H, Al ,(JM)]|HF),
Bub,ca(J) = —(RPA|[Aup(JM), H, AT ,(JM)]|RPA) w0
~ —(HF|[Aq(JM), H, AL, (JM)]|HF).
Here, the double commutator is defined as
1
[4,B,Cls =3 ([4.1B.c1]s + 14, B.C]4), 1)

with the (+£) signs corresponding to commutator or anticommutator operations. This
formulation highlights how the quasi-boson approximation is applied within the RPA
framework.
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LSRR  Random phase approximation in WS bases

Random phase approximation formalism 11

In particular, the matrix A reduces to the familiar Tamm-Dancoff matrix,

Aab,ca(JT) = SacOha(ca — €6) = Y {ja I J}{z

/
T Je ]d J

T
T/

O T

}(ad; J'T'|\V|eb; J'T"Y,
(42)

where ¢ denotes single-particle energies, and standard 65 notation is used.
The matrix B, on the other hand, encodes the ground-state correlations and is given by

ab cd(JT) ( )Jb+]c+]+1+T\/ 1+ 5 )(1 + 5bd)
J +T’ ’\2 Ja Jb J i1 1t 1t
x Y (1 i1 T (ac; J'T'|V|bd; J'T').  (43)

T .]d .70
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Random phase pproximation in WS buses
Random phase approximation in WS bases

Table: The optimized parameters and the resulting standard deviations for the nuclei considered
in the text.

I The new WS H The old WS
Nuclei H \% a’ 7’ ‘ Ay Ay ‘ Ay ‘ o

160 171.996  0.289112 5.59822 | 5.81171 —1.35229 1261 7679284 —3.50546 | 1.369
40Ca 173.999 0.153103 7.99329 | 56.6924  5.98731 | 1.240 72.9826 11.9835 | 1.243
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LSRR  Random phase approximation in WS bases

Random phase approximation in WS bases

The new WS v orbtials of 'O The old WS v orbtials of '°O

0.4 ‘ ‘ ‘ . . 0aF . . . . . -
02
0
z =S
g =

S —0.2

—0.4

—0.6

Figure: Optimized neutron () orbitals in 0. These orbitals are used in RPA calculation.

Hadi Sobhani (hadisobhani: @gmail.com)

Nankai University

40th Anniversary of the Halo Nuclei 44762



SLIBGEE  Random phase approximation in WS bases

Random phase approximation in WS bases

The new WS v orbtials of °Ca

The old WS v orbtials of **Ca

0.2

0
= = -02
> =
—0.4 nl —0.4 nl
— gvoa(r) —— gwod(r)
— gvoy (1) — guos(r)
— gu1s() — gu1s(r)
—0.6 —0.6
Il Il Il Il Il Il Il Il
0 4 6 8 10 12 0 4 6 8 10 12
r

Figure: The same as 5, but for 40Ca.
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LSRR  Random phase approximation in WS bases

Random phase approximation in WS bases

By reproducing the octupole transition probability, the polarization parameter in 60
is found to be

XNew ws (160) = 0.283327, Youaws(*°0) = 371.413. (44)

Similarly, the corresponding calculations for “°Ca yield

newws(10Ca) = 0.22997,  xouws(*°Ca) = 0.647105. (45)
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Collective model

AQOA Hamiltonian and Solutions I

Therefore the corresponding Hamiltonian gets the form of

R 1 K22 y N
> ZB)\Biaﬁ)\ﬂ)\aﬁ/\ 62 + 2B, |V P fa) (40

A=2,3

H=-—

where (5 and (33 are the quadrupole and octupole deformation. Bs and Bs are the
corresponding masses, which are associated with these distortions. L is the angular
momentum operator, along the principal axes of rotation in the intrinsic reference
frame.
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AQOA Hamiltonian and Solutions II

The solutions to the Schrédinger equation can be found in the following way

OF (B2, B3, 0) = (Ba3) >/ 2UE (B, B3)| LMO, £), (47)

where 6 denotes the set of Euler angles, which are essential for comprehending and
depicting the orientation of the body-fixed coordinate system delineated by the axes
z', 7y and 2’ about the fixed laboratory coordinate system represented by the axes z, y,
and z. In this framework, the mathematical notation | LM 0, +) is utilized to
demonstrate the dynamics of the rotation linked to an axially symmetric nucleus,
particularly emphasizing the angular momentum projection M as it aligns with the
laboratory-fixed z axis, while concurrently preserving a projection K that is equal to 0
along the body-fixed 2z’ axis

2L +1
LM0,£) = [ S5 (1 (<)1) (6) (48)

in which D(0) stands for Wigner functions of Euler angles. The positive parity states
having L = 0, 2,4, ... are indicated by the + label, while the — label refers to ones
with L =1,3,5,....
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Collective model

AQOA Hamiltonian and Solutions 111

The Schrédinger equation may be simplified considering new deformation variables

~ B ~ B By+ B
=ty B=Bay 2, B= 49)

the polar coordinates with the aim of the new deformation variables in the range of
0<fB<oocand —7/2 < ¢ < m/2

Bo=fcos¢,  P3=PBsing, B=+/B3+53, (50)

the reduced energy € = (2B/h?)FE, and the reduced potential v = (2B/h?)V. Then
we have
”10 LL+1) 18
0p2

5op " 3F(tsin’g) 208

q} VE(B,6) = 0
1)

3
o
B2 sin? 2¢
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Collective model

AQOA Hamiltonian and Solutions IV

As a simplification, let us assume that the potential energy v(ﬂ ¢) can be separated
into the form v(}3, @)= u(B) + w(¢*): a function of only, u(3), and a function of
OF = ¢ £ ¢o, w ((bi) Such a hypothesis permits us to separate Eq. (51) into two
independent equations. We further assume that w(&i) is a very steep, double-well
potential centered around +¢g. Then we have

d2 1d 1 L(L+1) 3 ~ i 5
7d32 - E@ 52 ( 3(1 +sin?¢y)  sin? 2¢0) +u(f) - Eﬁ(L)] Yr(B) =0
(52)
and
1 & T+ Ty
where the total wave function has been assumed as
VE(B,¢) = Ngvr(B)Ny (x(&F) £ x(67)) /V2 (54)
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AQOA Hamiltonian and Solutions V

with the normalization factors Nz and Ny, (3?) is the average of 32 over ¥1,(3), and
€, = €5(L) + €4. The ¢ value of 0 signifies the presence of a pure quadrupole
deformation, whereas ¢ = +7 /2 indicates a pure octupole deformation. The
pronounced steepness of the two oscillators ensures that ¢ remains in proximity to

+¢g, thereby maintaining a consistent competition between quadrupole and octupole
deformation.
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Collective model

AQOA Hamiltonian and Solutions VI

For the ¢* component, it is commonly assumed that the potential is centered around
the values +¢ . For instance, the equation

u(§*) = 5e0(d%)? (55)

can be rewritten as

[ (Z:I:)+ CO<52>(¢3i)2} X(6F) = e (B*)x(65), (56)

This equation represents a simple harmonic oscillator with eigenvalues given by

(57)
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Collective model

AQOA Hamiltonian and Solutions VII

and eigenfunctions

1/4

~ ~ _p207+N2 C 52
Xn¢(¢i) = Nn¢Hn¢(b0¢i)€ b (%) /27 bo = (0<2>) ) (58)
where the normalization constant is given by N,,, = /bo/(y/m2"¢ng!) and Hermite
polynomials are H.
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Collective model

AQOA Hamiltonian and Solutions VIII

Now, we turn to the part of the differential equation involving 3. In this section, we
consider the extended sextic (ES) potential

u(P) = 25 + 5" + e + i, (59)
By substituting this potential and assuming the solution in the form 1/}(5) = 'i(/%), we
obtain the following equation:
d2§(5~) ( @o 72 24 ~6> 3
——~ + |le— = —bB"—cB” —d =0, 60
7 7~ b5 - Bt = d° ) (5) (60)

B 1 L(L+1) 3
ag = ao(L, go) =a— 7+ 3(1+sin?¢g)  sin?(2¢g)”

(61)
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Collective model

AQOA Hamiltonian and Solutions IX

We need to perform several algebraic transformations to derive a solution for this
differential equation. The first step is the change of variable = 32, which simplifies
the equation by lowering the powers of terms:

Pe(x)  1/2dé@) (a0, e é@)
Rt e R B

=0. (62)

We obtain a form with known solutions by eliminating the first-order derivative term
in this differential equation. To remove this term, we assume the solution in the form
&(x) = f(z)/x. Substituting this into the differential equation yields:

2 ap _ 3
ddj;(zx)'i_(_ 1 216 +€/4—Z—cx—dx2> f(z)=0. (63)

The general solutions to this differential equation are given by:

f(z) = 2" exp (Bz + Dz?) h(x), (64)
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AQOA Hamiltonian and Solutions X

where the parameters are:

A= i (2+ V1 +4ay), (65)
—C
=— 66
Wz (66)
P (67)

and the governing differential equation for h(x) is

&) dh()( VI - o Vir?)

dz? dz 2vd
€ c\/1+4a0 b c? Vd B
(68)
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Collective model

AQOA Hamiltonian and Solutions XI

This differential equation has a known solvable form using the Bethe ansatz method.
Since, in this Hamiltonian, we are usually interested in node-less solutions, by

following the details of the method introduced and utilized in for the ground state
ng = 0, we obtain:

h(z) =1, (69)

which leads to the following eigenvalue equation and constraint:

e = (24 v1+4ag) \/b+\/g(4+\/1+4a0), (70)
0:2\/d (b+\/&(4+\/1+4a0)>. 1)
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Collective model

AQOA Hamiltonian and Solutions XII

To summarize this section of the paper, we present the final form of the solution to this

part of the differential equation in the same order as adopted during the solution
derivation process

¥(B) = Nps* ' exp [BB* + DB, (72)

where the normalization constant, Ny, is calculated using its definition

(73)
NIRRT
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Collective model

Results for sextic potential

The deviation parameter should be defined as

o= 1 (EEXP- ({7)  Erheo.(]) — Erneo.(07) )2
N* EExp.(2+) ETheo.(2+) - ETheo.(0+) ’

*
ISOtOPe émax OES ‘ OEs O Sextic ODavidson

22Ra 20 0.573 | 0.587 0.604 0.917
224Ra 28 0.606 | 0.616 0.801 1.351
226Ra 28 0.947 | 0.964 1.232 1.360
224Th 18 0.621 | 0.638 0.691 0.843
26Th 20 0.908 | 0.930 1.059 0.994
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Energy levels

num

2Ry
B e wa
PP
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o
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Thank you!
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