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Nuclear dynamics
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 The atomic nucleus is a complex quantum many-body system, which 

exhibits many interesting dynamical processes.

 The study of nuclear dynamical processes is important for the 

understanding of nuclear structure, the synthesis of superheavy 

elements, and the production of exotic nuclei far from stability, etc.

 Finding a unified way to describe nuclear dynamics and understanding its 

mechanism are longstanding and challenging problems in nuclear physics.

Collective vibration Fission Heavy-ion reaction
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Time-dependent density functional theory
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 Density functional theory (DFT) is currently the only microscopic theory 

that can be used to describe almost all nuclei in the nuclear chart.
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 Its time-depedent version (time-dependent DFT, TDDFT) is an important 

tool which provides a unified description of nuclear dynamical processes.

 TDDFT models a complex many-body system in terms of a product-type 

wave function (Slater determinant), which describes the time evolution of 

independent nucleons in a self-consistent mean field.



Application of TDDFT
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 TDDFT has been applied to a variety of nuclear dynamical processes:

➢ Collective vibration

➢ Dynamics of 𝛼-chain structure

➢ Fission

➢ Multinucleon transfer reaction

➢ Chiral vibration

➢ …
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Z. X. Ren et al., PRL 128 (2022) 172501
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Limitation of TDDFT
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 Due to the mean-field approximation, TDDFT has some limitations:

cannot reproduce spreading widths of one-body observables 

➢ not consider 2p-2h, 3p-3h, … excitations

➢ not take into account quantum fluctuations in collective space
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Beyond TDDFT methods
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 Beyond TDDFT methods are developed to overcome the limitations:

➢ Stochastic time-dependent Hartree-Fock method

➢ Generalized time-dependent generator-coordinate method

B. Li et al., PRC 108 (2023) 014321
P. Marevi ƴc et al., PRC 108 (2023) 014620
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 A common approximation in these methods is that each trajectory follows 

the TDDFT evolution. This treatment violates the time-dependent 

variational principle and can lead to non-conservation of the total energy. 

TDDFT

TDDFT



This work
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 In chemistry, there is a method named multiconfiguration time-dependent 

Hartree (MCTDH) which follows exactly the time-dependent variational 

principle.

𝜙𝑗,𝜏 particles

Advantages

1. total energy conservation

2. include 2p-2h excitations… 

3. include pairing correlations wi-

thout particle number conserv-

ation broken

 In this work, we introduce the configuration-interaction time-

dependent density functional theory (CI-TDDFT) for nuclear systems, 

inspired by the MCTDH method, and presents its first application.

𝑗, 𝜏

𝑡 𝐶𝑖(𝑡)𝐶𝑖(𝑡0)

MPC𝑖

M. H. Beck, H. -D. Meyer, ZPD 42 (1997) 113



Nuclear wave function

 In CI-TDDFT, the nuclear wave function is a superposition of Slater 

determinants (many-particle configurations, MPCs):  

According to the time-dependent variational principle, 

where        are the expansion coefficients and       is the creation operator 

for the single-particle state       . 

 To determine the nuclear wave function, the action functional is defined:

The Lagrange multipliers       are introduced to ensure the ortho-

normality of single-particle states during the time evolution.

 

 



Time evolution of nuclear wave function

 Time evolution of expansion coefficients: 

Energy kernel:

 Time evolution of single-particle states: 

One-body density matrix:

Here, the projection operator                           is introduced to 

eliminate the Lagrange multiplier          .

Mean-field kernel:

Two-body density matrix:

Complex 

coupled 

equations

TDDFT

𝑖ℏ𝜕𝑡𝜙𝑗,𝜏 = ෠ℎ𝜙𝑗,𝜏



Numerical Details

➢ Relativistic density functional: PC−PK1 

➢ Mesh size: (dx, dy, dz) = (1.0, 1.0, 1.0) fm

➢ Grid number: (nx, ny, nz) = (24, 24, 24)

➢ Initial radius: 𝑅0 = 3.56 fm  (𝑅g.s. = 3.66 fm)

➢ Configuration space:                                

 CI-TDDFT is firstly applied to study the isoscalar giant monopole 

resonance of 58Ni: 
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number of configurations: 𝐶6
2 = 15 



Time evolution of the total energy and radius 

 The total energy is conserved in CI-TDDFT, while that of TDDFT with 

pairing has some small oscillations.

 The radius calculated by CI-TDDFT is more damped than TDDFT. 



Strength distributions

Y. -W. Lui et al.,  Phys. Rev. C 73 (2006) 014314

 CI-TDDFT produces a significant broadening of the resonance width 

compared to TDDFT.

 The experimental width is still underestimated. More configurations are 

required to reproduce it.

Area = 1

Area = 1



Summary and outlook

 Summary: 

➢ The configuration-interaction time-dependent density functional 

theory (CI-TDDFT) is established. 

➢ Apply to isoscalar giant monopole resonance of 58Ni: CI-TDDFT 

yields a resonance width that is significantly broadened compared to 

standard TDDFT.

 Outlook: 

➢ Expand the configuration space to reproduce the resonance width of 58Ni

➢ Describe fission and heavy-ion reaction processes

Thank you for your attention!
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